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Abstract

This technical report introduces Docling, an easy to use, self-contained, MIT-
licensed open-source package for PDF document conversion. It is powered by
state-of-the-art specialized Al models for layout analysis (DocLayNet) and table
structure recognition (TableFormer), and runs efficiently on commodity hardware
in a small resource budget. The code interface allows for easy extensibility and
addition of new features and models.

1 Introduction

Converting PDF documents back into a machine-processable format has been a major challenge
for decades due to their huge variability in formats, weak standardization and printing-optimized
characteristic, which discards most structural features and metadata. With the advent of LLMs
and popular application patterns such as retrieval-augmented generation (RAG), leveraging the rich
content embedded in PDFs has become ever more relevant. In the past decade, several powerful
document understanding solutions have emerged on the market, most of which are commercial soft-
ware, cloud offerings [3] and most recently, multi-modal vision-language models. As of today, only
a handful of open-source tools cover PDF conversion, leaving a significant feature and quality gap
to proprietary solutions.

With Docling, we open-source a very capable and efficient document conversion tool which builds
on the powerful, specialized Al models and datasets for layout analysis and table structure recog-
nition we developed and presented in the recent past [12, 13, 9]. Docling is designed as a simple,
self-contained python library with permissive license, running entirely locally on commodity hard-
ware. Its code architecture allows for easy extensibility and addition of new features and models.
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Here is what Docling delivers today:

* Converts PDF documents to JSON or Markdown format, stable and lightning fast

* Understands detailed page layout, reading order, locates figures and recovers table struc-
tures

 Extracts metadata from the document, such as title, authors, references and language
* Optionally applies OCR, e.g. for scanned PDFs

* Can be configured to be optimal for batch-mode (i.e high throughput, low time-to-solution)
or interactive mode (compromise on efficiency, low time-to-solution)

 Can leverage different accelerators (GPU, MPS, etc).

2 Getting Started

To use Docling, you can simply install the docling package from PyPI. Documentation and examples
are available in our GitHub repository at github.com/DS4SD/docling. All required model assets' are
downloaded to a local huggingface datasets cache on first use, unless you choose to pre-install the
model assets in advance.

Docling provides an easy code interface to convert PDF documents from file system, URLs or binary
streams, and retrieve the output in either JSON or Markdown format. For convenience, separate
methods are offered to convert single documents or batches of documents. A basic usage example
is illustrated below. Further examples are available in the Doclign code repository.

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2206.01062" # PDF path or URL

converter = DocumentConverter ()

result = converter.convert_single (source)

print (result.render_as_markdown()) # output: "## DocLayNet: A Large
Human-Annotated Dataset for Document-Layout Analysis [...]"

Optionally, you can configure custom pipeline features and runtime options, such as turning on or
off features (e.g. OCR, table structure recognition), enforcing limits on the input document size, and
defining the budget of CPU threads. Advanced usage examples and options are documented in the
README file. Docling also provides a Dockerfile to demonstrate how to install and run it inside a
container.

3 Processing pipeline

Docling implements a linear pipeline of operations, which execute sequentially on each given docu-
ment (see Fig. 1). Each document is first parsed by a PDF backend, which retrieves the programmatic
text tokens, consisting of string content and its coordinates on the page, and also renders a bitmap
image of each page to support downstream operations. Then, the standard model pipeline applies a
sequence of Al models independently on every page in the document to extract features and content,
such as layout and table structures. Finally, the results from all pages are aggregated and passed
through a post-processing stage, which augments metadata, detects the document language, infers
reading-order and eventually assembles a typed document object which can be serialized to JSON
or Markdown.

3.1 PDF backends

Two basic requirements to process PDF documents in our pipeline are a) to retrieve all text content
and their geometric coordinates on each page and b) to render the visual representation of each
page as it would appear in a PDF viewer. Both these requirements are encapsulated in Docling’s
PDF backend interface. While there are several open-source PDF parsing libraries available for
python, we faced major obstacles with all of them for different reasons, among which were restrictive

'see huggingface.co/ds4sd/docling-models/
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Figure 1: Sketch of Docling’s default processing pipeline. The inner part of the model pipeline is
easily customizable and extensible.

licensing (e.g. pymupdf [7]), poor speed or unrecoverable quality issues, such as merged text cells
across far-apart text tokens or table columns (pypdfium, PyPDF) [15, 14].

We therefore decided to provide multiple backend choices, and additionally open-source a custom-
built PDF parser, which is based on the low-level gpdf[4] library. It is made available in a separate
package named docling-parse and powers the default PDF backend in Docling. As an alternative,
we provide a PDF backend relying on pypdfium, which may be a safe backup choice in certain cases,
e.g. if issues are seen with particular font encodings.

3.2 Al models

As part of Docling, we initially release two highly capable Al models to the open-source community,
which have been developed and published recently by our team. The first model is a layout analysis
model, an accurate object-detector for page elements [13]. The second model is TableFormer [12, 9],
a state-of-the-art table structure recognition model. We provide the pre-trained weights (hosted on
huggingface) and a separate package for the inference code as docling-ibm-models. Both models
are also powering the open-access deepsearch-experience, our cloud-native service for knowledge
exploration tasks.

Layout Analysis Model

Our layout analysis model is an object-detector which predicts the bounding-boxes and classes of
various elements on the image of a given page. Its architecture is derived from RT-DETR [16] and
re-trained on DocLayNet [13], our popular human-annotated dataset for document-layout analysis,
among other proprietary datasets. For inference, our implementation relies on the onnxruntime [5].

The Docling pipeline feeds page images at 72 dpi resolution, which can be processed on a single
CPU with sub-second latency. All predicted bounding-box proposals for document elements are
post-processed to remove overlapping proposals based on confidence and size, and then intersected
with the text tokens in the PDF to group them into meaningful and complete units such as paragraphs,
section titles, list items, captions, figures or tables.

Table Structure Recognition

The TableFormer model [12], first published in 2022 and since refined with a custom structure token
language [9], is a vision-transformer model for table structure recovery. It can predict the logical
row and column structure of a given table based on an input image, and determine which table
cells belong to column headers, row headers or the table body. Compared to earlier approaches,
TableFormer handles many characteristics of tables, such as partial or no borderlines, empty cells,
rows or columns, cell spans and hierarchy both on column-heading or row-heading level, tables with
inconsistent indentation or alignment and other complexities. For inference, our implementation
relies on PyTorch [2].
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The Docling pipeline feeds all table objects detected in the layout analysis to the TableFormer model,
by providing an image-crop of the table and the included text cells. TableFormer structure predic-
tions are matched back to the PDF cells in post-processing to avoid expensive re-transcription text
in the table image. Typical tables require between 2 and 6 seconds to be processed on a standard
CPU, strongly depending on the amount of included table cells.

OCR

Docling provides optional support for OCR, for example to cover scanned PDFs or content in
bitmaps images embedded on a page. In our initial release, we rely on EasyOCR [1], a popular third-
party OCR library with support for many languages. Docling, by default, feeds a high-resolution
page image (216 dpi) to the OCR engine, to allow capturing small print detail in decent quality.
While EasyOCR delivers reasonable transcription quality, we observe that it runs fairly slow on
CPU (upwards of 30 seconds per page).

We are actively seeking collaboration from the open-source community to extend Docling with
additional OCR backends and speed improvements.

3.3 Assembly

In the final pipeline stage, Docling assembles all prediction results produced on each page into a
well-defined datatype that encapsulates a converted document, as defined in the auxiliary package
docling-core. The generated document object is passed through a post-processing model which
leverages several algorithms to augment features, such as detection of the document language, cor-
recting the reading order, matching figures with captions and labelling metadata such as title, authors
and references. The final output can then be serialized to JSON or transformed into a Markdown
representation at the users request.

3.4 Extensibility

Docling provides a straight-forward interface to extend its capabilities, namely the model pipeline.
A model pipeline constitutes the central part in the processing, following initial document parsing
and preceding output assembly, and can be fully customized by sub-classing from an abstract base-
class (BaseModelPipeline) or cloning the default model pipeline. This effectively allows to fully
customize the chain of models, add or replace models, and introduce additional pipeline config-
uration parameters. To use a custom model pipeline, the custom pipeline class to instantiate can
be provided as an argument to the main document conversion methods. We invite everyone in the
community to propose additional or alternative models and improvements.

Implementations of model classes must satisfy the python Callable interface. The __call__ method
must accept an iterator over page objects, and produce another iterator over the page objects which
were augmented with the additional features predicted by the model, by extending the provided
PagePredictions data model accordingly.

4 Performance

In this section, we establish some reference numbers for the processing speed of Docling and the
resource budget it requires. All tests in this section are run with default options on our standard test
set distributed with Docling, which consists of three papers from arXiv and two IBM Redbooks,
with a total of 225 pages. Measurements were taken using both available PDF backends on two
different hardware systems: one MacBook Pro M3 Max, and one bare-metal server running Ubuntu
20.04 LTS on an Intel Xeon ES-2690 CPU. For reproducibility, we fixed the thread budget (through
setting OMP_NUM_THREADS environment variable) once to 4 (Docling default) and once to 16
(equal to full core count on the test hardware). All results are shown in Table 1.

If you need to run Docling in very low-resource environments, please consider configuring the
pypdfium backend. While it is faster and more memory efficient than the default docling-parse
backend, it will come at the expense of worse quality results, especially in table structure recovery.

Establishing GPU acceleration support for the Al models is currently work-in-progress and largely
untested, but may work implicitly when CUDA is available and discovered by the onnxruntime and
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torch runtimes backing the Docling pipeline. We will deliver updates on this topic at in a future
version of this report.

Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our
test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution
(TTS), computed throughput in pages per second, and the peak memory used (resident set size) for
both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads.

CPU Thread native backend pypdfium backend
budget TTS  Pages/s Mem TTS  Pages/s Mem

Apple M3 Max 4 177 s 1.27 103 s 2.18

(16 cores) 16 167s 134 6206B o 545 256GB

Intel(R) Xeon 4 375 s 0.60 239 s 0.94

E5-2690 16 244s 092 6.16 GB 143 s 1.57 242GB

(16 cores)

5 Applications

Thanks to the high-quality, richly structured document conversion achieved by Docling, its out-
put qualifies for numerous downstream applications. For example, Docling can provide a base
for detailed enterprise document search, passage retrieval or classification use-cases, or support
knowledge extraction pipelines, allowing specific treatment of different structures in the document,
such as tables, figures, section structure or references. For popular generative Al application pat-
terns, such as retrieval-augmented generation (RAG), we provide quackling, an open-source package
which capitalizes on Docling’s feature-rich document output to enable document-native optimized
vector embedding and chunking. It plugs in seamlessly with LLM frameworks such as Llamaln-
dex [8]. Since Docling is fast, stable and cheap to run, it also makes for an excellent choice to build
document-derived datasets. With its powerful table structure recognition, it provides significant ben-
efit to automated knowledge-base construction [11, 10]. Docling is also integrated within the open
IBM data prep kit [6], which implements scalable data transforms to build large-scale multi-modal
training datasets.

6 Future work and contributions

Docling is designed to allow easy extension of the model library and pipelines. In the future, we
plan to extend Docling with several more models, such as a figure-classifier model, an equation-
recognition model, a code-recognition model and more. This will help improve the quality of con-
version for specific types of content, as well as augment extracted document metadata with ad-
ditional information. Further investment into testing and optimizing GPU acceleration as well as
improving the Docling-native PDF backend are on our roadmap, too.

We encourage everyone to propose or implement additional features and models, and will
gladly take your inputs and contributions under review. The codebase of Docling is open for use
and contribution, under the MIT license agreement and in alignment with our contributing guidelines
included in the Docling repository. If you use Docling in your projects, please consider citing this
technical report.
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Appendix

In this section, we illustrate a few examples of Docling’s output in Markdown and JSON
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Figure 2: Title page of the DocLayNet paper (arxiv.org/pdf/2206.01062) - left PDF, right rendered
Markdown. If recognized, metadata such as authors are appearing first under the title. Text content
inside figures is currently dropped, the caption is retained and linked to the figure in the JSON
representation (not shown).
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obtain a pixel-accurate annotation and again reduce time and effort, In this section, we will present several aspects related to the hwiatin
The CCS annotation tool automatically shrinks every user-drawn  performance of object detection models on DocLayNet. Similarly 1o 60, dopending on s complexty
box to the minimum bounding-box around the enclosed text-cells a5 in PubLayNet, we will evaluate the quality of their predictions
for all purely text-based segments, which excludes only Table and  using mean average precision (mAP) with 10 overlaps that range 5 EXPERIMENTS
Picture. For the latter, we instructed annotation staff to minimise  from 0.5 to 0.95 in steps of 0.05 (mAP@0.5-0.95). These scores are
inclusion of surrounding whitespace while including all graphical ~ computed by leveraging the evaluation code provided by the COCO y
lines. A downside of snapping boxes to enclosed text cells is that APl [16]. i
some wrongly parsed PDF pages cannot be annotated correctly and Furthermre,
need to be skipped. Fourth, we established a way to flag pages as . . . in Publ As such,wo
rejected for cases where no valid annotation according to the label  Baselines for Object Detection wilelate o these object detection methods in this
guidelines could be achieved. Example cases for this would be PDF In Table 2, we present baseline experiments (given in mAP) on Mask e
pages that render incorrectly or contain layouts that are impossible R-CNN [12], Faster R-CNN [11], and YOLOVS [13]. Both training. the DocLayNet dataset, 1 the " ayNet i
to capture with non-overlapping rectangles. Such rejected pagesare  and evaluation were performed on RGB images with dimensions of i sma cata wil oty sgnianty bttor redicions.
not contained in the final dataset. With all these measures in place, 10251025 pixels. For training, we only used one annotation in case
experienced annotation staff managed to annotate a single page i of redundantly annotated pages. As one can observe, the variation paper
a typical timeframe of 20s to 60s, depending on its complexity. in mAP between the models is rather low, but overall between 6 In this section, yNet. Similarly as in
and 10% lower than the mAP computed from the pairwise human PubLayN
5 EXPERIMENTS annotations on triple-annotated pages. This gives a good indication o
that the DocLayNet dataset poses a worthwhile challenge for the
The primary goal of DocLayNet is to obtain high-quality ML models research community to close the gap between human recognition Baselines for Object Detection
capable of accurate document-layout analysis on a wide variety and ML approaches. It is interesting to see that Mask R-CNN and
of challenging layouts. As discussed in Section 2, object detection ~ Faster R-CNN produce very comparable mAP scores, indicating InTablo 2, RONN[12], (1], and YOLOVS (13]. Bot raining
models are currently the easiest to use, due to the standardisation  that pixel-based image segmentation derived from bounding-boxes 1025 x 1025 piels. Forraining, we oy used one annotation i case
of ground-truth data in COCO format [16] and the availability of does not help to obtain better predictions. On the other hand, the by g
general frameworks such as detectron2 (17). Furthermore, baseline ~ more recent YolovSx model does very well and even out-performs Do
numbers in PubLayNet and DocBank were obtained using standard  humans on selected labels such as Text, Table and Picture. This is i .
object detection models such as Mask R-CNN and Faster R-CNN, 1ot entirely surprising, as Text, Table and Picture are abundant and p
As such, we will relate to these object detection methods in this the most visually distinctive in a document, Toxt,
surpising, a Text, Tebl and P

Figure 3: Page 6 of the DocLayNet paper. If recognized, metadata such as authors are appearing
first under the title. Elements recognized as page headers or footers are suppressed in Markdown to
deliver uninterrupted content in reading order. Tables are inserted in reading order. The paragraph
in 5. Experiments” wrapping over the column end is broken up in two and interrupted by the table.



% of Total triple inter-annotator mAP @ 0.5-0.95 (%)
class label Count | Train  Test Val All Fin  Man Sci  Law Pat Ten
Caption 22524 | 204 177 232 8489 40-61 86-92 94-99 95-99 6978  n/a
Footnote 6318 | 060 031 058 |83-91 n/a 100 62-88 8594 n/a 82-97
Formula 25027 225 190 296|8385 n/a n/a 84-87 8696 n/a nfa
List-item 185660 | 17.19 1334 1582 | 87-88 74-83 90-92  97-97 81-85 75-88 93-95
Page-footer 70878 | 651 558  6.00 | 93-94 88-90 95-96 100 9297 100 9698
Page-header 58022 | 510 670 506 | 85-89 66-76 90-94 98-100 91-92 97-99 81-86
Picture 45976 | 421 278 5316971 56-59 8286  69-82 80-95 66-71 59-76
Section-header | 142884 | 1260 1577 1285 | 83-84 76-81 90-92  94-95 87-94 69-73 78-86
Table 34733 | 320 227 360 | 77-81 75-80 83-86  98-99 58-80 79-84 70-85
Text 510377 | 4582 49.28 4500 | 84-86 81-86 8893  89-93 8§7-92 71-79 87-95
Title 5071 047 030 050 | 60-72 24-63 50-63 94-100 82-96 68-79 24-56
Total 1107470 | 941123 99816 66531 | 82-83 71-74 79-81  89-94 86-91 71-76  68-85

<

Figure 4: Table 1 from the DocLayNet paper in the original PDF (A), as rendered Markdown (B)
and in JSON representation (C). Spanning table cells, such as the multi-column header “triple inter-
annotator mAP@0.5-0.95 (%)”, is repeated for each column in the Markdown representation (B),
which guarantees that every data point can be traced back to row and column headings only by its
grid coordinates in the table. In the JSON representation, the span information is reflected in the

v "tables":

{

1}

12,
14,

"bbox": [
329.04998779296875,
643.40185546875,
483.39764404296875,
651.7764892578125

1,

"spans": [«

“triple inter-annotator mAP @ 0.5-0.95 (%)",
t 5,

"col-span": [5,12],

“row": @,

"row-span": [0,1]

fields of each table cell (C).
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