import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] + history messages.append({"role": "user", "content": message}) response = "" for part in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ): token = part.choices[0].delta.content if token: response += token history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": response}) return history, "" with gr.Blocks() as demo: gr.Markdown("## Zephyr Chatbot Controls") role_dropdown = gr.Dropdown(choices=["SDE", "BA"], label="Select Role", value="SDE") system = gr.Textbox(value="You are a friendly chatbot.", label="System message") max_tokens = gr.Slider(1, 2048, value=512, label="Max tokens") temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature", step=0.1) top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p", step=0.05) with gr.Row(): clear_btn = gr.Button("Clear Chat") dummy_btn = gr.Button("Dummy Action") clear_btn.click(lambda: gr.Info("Chat cleared!")) dummy_btn.click(lambda: gr.Info("Dummy action clicked!")) if __name__ == "__main__": demo.launch()