Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import os | |
from datetime import datetime | |
from dotenv import load_dotenv | |
from supabase import create_client, Client | |
from pinecone import Pinecone | |
from sentence_transformers import SentenceTransformer | |
from typing import List, Dict | |
load_dotenv() | |
SUPABASE_URL = os.getenv("DB_URL") | |
SUPABASE_KEY = os.getenv("DB_KEY") | |
supabase_client = create_client(SUPABASE_URL, SUPABASE_KEY) | |
pinecone_api_key = os.getenv("PINECONE") | |
pc = Pinecone(api_key=pinecone_api_key) | |
index = pc.Index("focus-guru") | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
def ingest_user_progress(supabase_client: Client, user_id: int, video_id: str, rating: float, time_spent: int, play_count: int, completed: bool): | |
data = { | |
'user_id': user_id, | |
'video_id': video_id, | |
'rating': rating, | |
'time_spent': time_spent, | |
'play_count': play_count, | |
'completed': completed, | |
'updated_at': datetime.now().isoformat() | |
} | |
response = supabase_client.table('user_progress').insert(data, upsert=True).execute() | |
return response.data | |
def gradio_ingest(user_input): | |
try: | |
data = json.loads(user_input) | |
user_id = int(data.get("user_id", 0)) | |
video_id = data.get("video_id", "") | |
rating = float(data.get("rating", 0)) | |
time_spent = int(data.get("time_spent", 0)) | |
play_count = int(data.get("play_count", 0)) | |
completed = bool(data.get("completed", False)) | |
except Exception as e: | |
return f"<div style='color: red;'>Error parsing input: {e}</div>" | |
res = ingest_user_progress(supabase_client, user_id, video_id, rating, time_spent, play_count, completed) | |
return f"<div style='color: green;'>Ingested data: {res}</div>" | |
def recommend_playlists_by_package_and_module(assessment_output, index, model): | |
report_text = assessment_output.get("report", "") | |
packages = assessment_output.get("package", []) | |
modules = ["Nutrition", "Exercise", "Meditation"] | |
recommendations = {} | |
if not report_text: | |
for pkg in packages: | |
recommendations[pkg] = {mod: {"title": "No playlist found", "description": ""} for mod in modules} | |
return recommendations | |
query_embedding = model.encode(report_text, convert_to_numpy=True).tolist() | |
for pkg in packages: | |
recommendations[pkg] = {} | |
for mod in modules: | |
filter_dict = {"type": "playlist", "Package": pkg, "Module": mod} | |
results = index.query(vector=query_embedding, top_k=1, include_metadata=True, filter=filter_dict) | |
if results["matches"]: | |
match = results["matches"][0] | |
metadata = match["metadata"] | |
title = metadata.get("Playlist Name", "Unknown Playlist") | |
description = metadata.get("Description", "") | |
recommendations[pkg][mod] = {"title": title, "description": description} | |
else: | |
recommendations[pkg][mod] = {"title": "No playlist found", "description": ""} | |
return recommendations | |
def gradio_recommend_playlist(input_json): | |
try: | |
assessment_data = json.loads(input_json) | |
except json.JSONDecodeError: | |
return "<div style='color: red;'>Error: Invalid JSON format</div>" | |
if "package" not in assessment_data or "report" not in assessment_data: | |
return "<div style='color: red;'>Error: Missing 'package' or 'report' field</div>" | |
recs = recommend_playlists_by_package_and_module(assessment_data, index, model) | |
html_output = """ | |
<div style=" | |
display: flex; | |
flex-direction: column; | |
gap: 30px; | |
padding: 20px; | |
font-family: Arial, sans-serif; | |
"> | |
""" | |
for pkg, mod_recs in recs.items(): | |
html_output += f"<h2 style='color: #2d3436;'>{pkg} Package</h2>" | |
html_output += "<div style='display: flex; flex-wrap: wrap; gap: 20px;'>" | |
for mod, rec in mod_recs.items(): | |
card_html = f""" | |
<div style=" | |
border: 1px solid #e0e0e0; | |
border-radius: 10px; | |
padding: 20px; | |
background: white; | |
width: 300px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
"> | |
<h3 style="margin: 0 0 12px 0; color: #0984e3;">{mod} Module</h3> | |
<h4 style="margin: 0 0 8px 0; color: #2d3436;">{rec['title']}</h4> | |
<p style="margin: 0; color: #636e72; line-height: 1.5;">{rec['description']}</p> | |
</div> | |
""" | |
html_output += card_html | |
html_output += "</div>" | |
html_output += "</div>" | |
return html_output | |
def recommend_videos(user_id: int, K: int = 5, M: int = 10, N: int = 5) -> List[Dict]: | |
response = supabase_client.table('user_progress').select('video_id, rating, completed, play_count, videos!inner(playlist_id)').eq('user_id', user_id).execute() | |
interactions = response.data | |
if not interactions: | |
return [] | |
for inter in interactions: | |
rating = inter['rating'] if inter['rating'] is not None else 0 | |
completed_val = 1 if inter['completed'] else 0 | |
play_count = inter['play_count'] | |
engagement = rating + 2 * completed_val + play_count | |
inter['engagement'] = engagement | |
top_videos = sorted(interactions, key=lambda x: x['engagement'], reverse=True)[:K] | |
watched_completed_videos = {i['video_id'] for i in interactions if i['completed']} | |
candidates = {} | |
for top_video in top_videos: | |
query_id = f"video_{top_video['video_id']}" | |
response = index.query(id=query_id, top_k=M + 1, include_metadata=True) | |
for match in response.get('matches', []): | |
if match['id'] == query_id: | |
continue | |
metadata = match.get('metadata', {}) | |
vid = metadata.get('vid') | |
if not vid: | |
continue | |
if vid in watched_completed_videos: | |
continue | |
similarity = match['score'] | |
pid = metadata.get('PID') | |
boost = 1.1 if pid == top_video['videos']['playlist_id'] else 1.0 | |
partial_score = top_video['engagement'] * similarity * boost | |
if vid in candidates: | |
candidates[vid]['total_score'] += partial_score | |
else: | |
candidates[vid] = {'total_score': partial_score, 'metadata': metadata} | |
sorted_candidates = sorted(candidates.items(), key=lambda x: x[1]['total_score'], reverse=True)[:N] | |
recommendations = [] | |
for vid, data in sorted_candidates: | |
metadata = data['metadata'] | |
recommendations.append({ | |
'video_id': vid, | |
'title': metadata.get('video_title'), | |
'description': metadata.get('video_description'), | |
'score': data['total_score'] | |
}) | |
return recommendations | |
def gradio_recommend_videos(user_id_input): | |
try: | |
user_id = int(user_id_input) | |
except Exception as e: | |
return f"<div style='color: red;'>Error: {e}</div>" | |
recs = recommend_videos(user_id) | |
if not recs: | |
return "<div style='color: #636e72;'>No video recommendations found for this user.</div>" | |
html_output = """ | |
<div style=" | |
display: flex; | |
flex-direction: column; | |
gap: 30px; | |
padding: 20px; | |
font-family: Arial, sans-serif; | |
"> | |
""" | |
html_output += "<h2 style='color: #2d3436;'>Recommended Videos</h2>" | |
html_output += "<div style='display: flex; flex-wrap: wrap; gap: 20px;'>" | |
for rec in recs: | |
card_html = f""" | |
<div style=" | |
border: 1px solid #e0e0e0; | |
border-radius: 10px; | |
padding: 20px; | |
background: white; | |
width: 300px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
"> | |
<h3 style="margin: 0 0 12px 0; color: #0984e3;">{rec['title']}</h3> | |
<p style="margin: 0 0 8px 0; color: #636e72;">{rec['description']}</p> | |
<p style="margin: 0; color: #2d3436;">Score: {rec['score']:.2f}</p> | |
</div> | |
""" | |
html_output += card_html | |
html_output += "</div></div>" | |
return html_output | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("Playlist Recommendation"): | |
playlist_input = gr.Textbox( | |
lines=10, | |
label="Assessment Data (JSON)", | |
placeholder='''{ | |
"package": ["Focus", "Insomnia"], | |
"report": "Based on your responses, you may struggle with focus, anxiety, and burnout. The Focus and Insomnia packages can help improve your mental clarity and sleep quality." | |
}''' | |
) | |
playlist_output = gr.HTML(label="Recommended Playlists") | |
playlist_btn = gr.Button("Get Playlist Recommendations") | |
playlist_btn.click(gradio_recommend_playlist, playlist_input, playlist_output) | |
with gr.TabItem("Video Recommendation"): | |
user_id_input = gr.Textbox(lines=1, label="User ID", placeholder="1") | |
videos_output = gr.HTML(label="Recommended Videos") | |
videos_btn = gr.Button("Get Video Recommendations") | |
videos_btn.click(gradio_recommend_videos, user_id_input, videos_output) | |
with gr.TabItem("User Interaction Ingestion"): | |
ingest_input = gr.Textbox( | |
lines=10, | |
label="User Progress Data (JSON)", | |
placeholder='''{ | |
"user_id": 1, | |
"video_id": "abc123", | |
"rating": 4.5, | |
"time_spent": 300, | |
"play_count": 1, | |
"completed": false | |
}''' | |
) | |
ingest_output = gr.HTML(label="Ingestion Result") | |
ingest_btn = gr.Button("Ingest Data") | |
ingest_btn.click(gradio_ingest, ingest_input, ingest_output) | |
demo.launch() | |