Spaces:
Sleeping
Sleeping
Update apps/gradio_app.py
Browse files- apps/gradio_app.py +140 -145
apps/gradio_app.py
CHANGED
@@ -1,146 +1,141 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
from gradio_app.inference import run_inference
|
4 |
-
from gradio_app.components import (
|
5 |
-
CONTENT_DESCRIPTION, CONTENT_OUTTRO,
|
6 |
-
CONTENT_IN_1, CONTENT_IN_2,
|
7 |
-
CONTENT_OUT_1, CONTENT_OUT_2,
|
8 |
-
list_reference_files, list_mapping_files,
|
9 |
-
list_classifier_files, list_edgeface_files
|
10 |
-
)
|
11 |
-
from glob import glob
|
12 |
-
import os
|
13 |
-
|
14 |
-
def create_image_io_row():
|
15 |
-
"""Create the row for image input and output display."""
|
16 |
-
with gr.Row(elem_classes=["image-io-row"]):
|
17 |
-
image_input = gr.Image(type="pil", label="Upload Image")
|
18 |
-
output = gr.HTML(label="Inference Results", elem_classes=["results-container"])
|
19 |
-
return image_input, output
|
20 |
-
|
21 |
-
def create_model_settings_row():
|
22 |
-
"""Create the row for model files and settings."""
|
23 |
-
with gr.Row():
|
24 |
-
with gr.Column():
|
25 |
-
with gr.Group(elem_classes=["section-group"]):
|
26 |
-
gr.Markdown("### Model Files", elem_classes=["section-title"])
|
27 |
-
ref_dict = gr.Dropdown(
|
28 |
-
choices=["Select a file"] + list_reference_files(),
|
29 |
-
label="Reference Dict JSON",
|
30 |
-
value="data/reference_data/reference_image_data.json"
|
31 |
-
)
|
32 |
-
index_map = gr.Dropdown(
|
33 |
-
choices=["Select a file"] + list_mapping_files(),
|
34 |
-
label="Index to Class Mapping JSON",
|
35 |
-
value="ckpts/index_to_class_mapping.json"
|
36 |
-
)
|
37 |
-
classifier_model = gr.Dropdown(
|
38 |
-
choices=["Select a file"] + list_classifier_files(),
|
39 |
-
label="Classifier Model (.pth)",
|
40 |
-
value="ckpts/SlimFace_efficientnet_b3_full_model.pth"
|
41 |
-
)
|
42 |
-
edgeface_model = gr.Dropdown(
|
43 |
-
choices=["Select a file"] + list_edgeface_files(),
|
44 |
-
label="EdgeFace Model (.pt)",
|
45 |
-
value="ckpts/idiap/edgeface_s_gamma_05.pt"
|
46 |
-
)
|
47 |
-
with gr.Column():
|
48 |
-
with gr.Group(elem_classes=["section-group"]):
|
49 |
-
gr.Markdown("### Advanced Settings", elem_classes=["section-title"])
|
50 |
-
algorithm = gr.Dropdown(
|
51 |
-
choices=["yolo", "mtcnn", "retinaface"],
|
52 |
-
label="Detection Algorithm",
|
53 |
-
value="yolo"
|
54 |
-
)
|
55 |
-
accelerator = gr.Dropdown(
|
56 |
-
choices=["auto", "cpu", "cuda", "mps"],
|
57 |
-
label="Accelerator",
|
58 |
-
value="auto"
|
59 |
-
)
|
60 |
-
resolution = gr.Slider(
|
61 |
-
minimum=128,
|
62 |
-
maximum=512,
|
63 |
-
step=32,
|
64 |
-
label="Image Resolution",
|
65 |
-
value=300
|
66 |
-
)
|
67 |
-
similarity_threshold = gr.Slider(
|
68 |
-
minimum=0.1,
|
69 |
-
maximum=1.0,
|
70 |
-
step=0.05,
|
71 |
-
label="Similarity Threshold",
|
72 |
-
value=0.3
|
73 |
-
)
|
74 |
-
return ref_dict, index_map, classifier_model, edgeface_model, algorithm, accelerator, resolution, similarity_threshold
|
75 |
-
|
76 |
-
# Load local CSS file
|
77 |
-
CSS = open("apps/gradio_app/static/styles.css").read()
|
78 |
-
|
79 |
-
def create_interface():
|
80 |
-
"""Create the Gradio interface for SlimFace."""
|
81 |
-
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
82 |
-
gr.Markdown("# SlimFace Demonstration")
|
83 |
-
gr.Markdown(CONTENT_DESCRIPTION)
|
84 |
-
gr.Markdown(CONTENT_IN_1)
|
85 |
-
gr.HTML(CONTENT_IN_2)
|
86 |
-
|
87 |
-
image_input, output = create_image_io_row()
|
88 |
-
ref_dict, index_map, classifier_model, edgeface_model, algorithm, accelerator, resolution, similarity_threshold = create_model_settings_row()
|
89 |
-
|
90 |
-
# Add example image gallery as a
|
91 |
-
with gr.Group():
|
92 |
-
gr.Markdown("### Example Images")
|
93 |
-
example_images = glob("apps/assets/examples/*.[jp][pn][gf]")
|
94 |
-
if example_images:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
"""Launch the Gradio interface."""
|
142 |
-
demo = create_interface()
|
143 |
-
demo.launch(share=True)
|
144 |
-
|
145 |
-
if __name__ == "__main__":
|
146 |
main()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from gradio_app.inference import run_inference
|
4 |
+
from gradio_app.components import (
|
5 |
+
CONTENT_DESCRIPTION, CONTENT_OUTTRO,
|
6 |
+
CONTENT_IN_1, CONTENT_IN_2,
|
7 |
+
CONTENT_OUT_1, CONTENT_OUT_2,
|
8 |
+
list_reference_files, list_mapping_files,
|
9 |
+
list_classifier_files, list_edgeface_files
|
10 |
+
)
|
11 |
+
from glob import glob
|
12 |
+
import os
|
13 |
+
|
14 |
+
def create_image_io_row():
|
15 |
+
"""Create the row for image input and output display."""
|
16 |
+
with gr.Row(elem_classes=["image-io-row"]):
|
17 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
18 |
+
output = gr.HTML(label="Inference Results", elem_classes=["results-container"])
|
19 |
+
return image_input, output
|
20 |
+
|
21 |
+
def create_model_settings_row():
|
22 |
+
"""Create the row for model files and settings."""
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column():
|
25 |
+
with gr.Group(elem_classes=["section-group"]):
|
26 |
+
gr.Markdown("### Model Files", elem_classes=["section-title"])
|
27 |
+
ref_dict = gr.Dropdown(
|
28 |
+
choices=["Select a file"] + list_reference_files(),
|
29 |
+
label="Reference Dict JSON",
|
30 |
+
value="data/reference_data/reference_image_data.json"
|
31 |
+
)
|
32 |
+
index_map = gr.Dropdown(
|
33 |
+
choices=["Select a file"] + list_mapping_files(),
|
34 |
+
label="Index to Class Mapping JSON",
|
35 |
+
value="ckpts/index_to_class_mapping.json"
|
36 |
+
)
|
37 |
+
classifier_model = gr.Dropdown(
|
38 |
+
choices=["Select a file"] + list_classifier_files(),
|
39 |
+
label="Classifier Model (.pth)",
|
40 |
+
value="ckpts/SlimFace_efficientnet_b3_full_model.pth"
|
41 |
+
)
|
42 |
+
edgeface_model = gr.Dropdown(
|
43 |
+
choices=["Select a file"] + list_edgeface_files(),
|
44 |
+
label="EdgeFace Model (.pt)",
|
45 |
+
value="ckpts/idiap/edgeface_s_gamma_05.pt"
|
46 |
+
)
|
47 |
+
with gr.Column():
|
48 |
+
with gr.Group(elem_classes=["section-group"]):
|
49 |
+
gr.Markdown("### Advanced Settings", elem_classes=["section-title"])
|
50 |
+
algorithm = gr.Dropdown(
|
51 |
+
choices=["yolo", "mtcnn", "retinaface"],
|
52 |
+
label="Detection Algorithm",
|
53 |
+
value="yolo"
|
54 |
+
)
|
55 |
+
accelerator = gr.Dropdown(
|
56 |
+
choices=["auto", "cpu", "cuda", "mps"],
|
57 |
+
label="Accelerator",
|
58 |
+
value="auto"
|
59 |
+
)
|
60 |
+
resolution = gr.Slider(
|
61 |
+
minimum=128,
|
62 |
+
maximum=512,
|
63 |
+
step=32,
|
64 |
+
label="Image Resolution",
|
65 |
+
value=300
|
66 |
+
)
|
67 |
+
similarity_threshold = gr.Slider(
|
68 |
+
minimum=0.1,
|
69 |
+
maximum=1.0,
|
70 |
+
step=0.05,
|
71 |
+
label="Similarity Threshold",
|
72 |
+
value=0.3
|
73 |
+
)
|
74 |
+
return ref_dict, index_map, classifier_model, edgeface_model, algorithm, accelerator, resolution, similarity_threshold
|
75 |
+
|
76 |
+
# Load local CSS file
|
77 |
+
CSS = open("apps/gradio_app/static/styles.css").read()
|
78 |
+
|
79 |
+
def create_interface():
|
80 |
+
"""Create the Gradio interface for SlimFace."""
|
81 |
+
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
82 |
+
gr.Markdown("# SlimFace Demonstration")
|
83 |
+
gr.Markdown(CONTENT_DESCRIPTION)
|
84 |
+
gr.Markdown(CONTENT_IN_1)
|
85 |
+
gr.HTML(CONTENT_IN_2)
|
86 |
+
|
87 |
+
image_input, output = create_image_io_row()
|
88 |
+
ref_dict, index_map, classifier_model, edgeface_model, algorithm, accelerator, resolution, similarity_threshold = create_model_settings_row()
|
89 |
+
|
90 |
+
# Add example image gallery as a row of columns
|
91 |
+
with gr.Group():
|
92 |
+
gr.Markdown("### Example Images")
|
93 |
+
example_images = glob("apps/assets/examples/*.[jp][pn][gf]")
|
94 |
+
if example_images:
|
95 |
+
with gr.Row(elem_classes=["example-row"]):
|
96 |
+
for img_path in example_images:
|
97 |
+
with gr.Column(min_width=120):
|
98 |
+
gr.Image(
|
99 |
+
value=img_path,
|
100 |
+
label=os.path.basename(img_path),
|
101 |
+
type="filepath",
|
102 |
+
height=100,
|
103 |
+
elem_classes=["example-image"]
|
104 |
+
)
|
105 |
+
gr.Button(f"Use {os.path.basename(img_path)}").click(
|
106 |
+
fn=lambda x=img_path: Image.open(x),
|
107 |
+
outputs=image_input
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
gr.Markdown("No example images found in apps/assets/examples/")
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
submit_btn = gr.Button("Run Inference", variant="primary", elem_classes=["centered-button"])
|
114 |
+
|
115 |
+
submit_btn.click(
|
116 |
+
fn=run_inference,
|
117 |
+
inputs=[
|
118 |
+
image_input,
|
119 |
+
ref_dict,
|
120 |
+
index_map,
|
121 |
+
classifier_model,
|
122 |
+
edgeface_model,
|
123 |
+
algorithm,
|
124 |
+
accelerator,
|
125 |
+
resolution,
|
126 |
+
similarity_threshold
|
127 |
+
],
|
128 |
+
outputs=output
|
129 |
+
)
|
130 |
+
gr.Markdown(CONTENT_OUTTRO)
|
131 |
+
gr.HTML(CONTENT_OUT_1)
|
132 |
+
gr.Markdown(CONTENT_OUT_2)
|
133 |
+
return demo
|
134 |
+
|
135 |
+
def main():
|
136 |
+
"""Launch the Gradio interface."""
|
137 |
+
demo = create_interface()
|
138 |
+
demo.launch()
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
141 |
main()
|