Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
4 |
|
5 |
-
# ---
|
6 |
-
# This model is small enough to run on a free CPU Space
|
7 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
8 |
-
|
9 |
-
# --- Model Loading ---
|
10 |
-
print("Loading model and tokenizer...")
|
11 |
-
# Load the model directly to CPU. No need for device_map or specific dtypes.
|
12 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
-
print("
|
15 |
|
16 |
-
# ---
|
17 |
def generate_text(prompt, max_new_tokens, temperature, top_p):
|
18 |
-
""
|
19 |
-
|
20 |
-
"""
|
21 |
-
print(f"Generating response for prompt: '{prompt}'")
|
22 |
-
|
23 |
-
# Format the prompt using the model's chat template
|
24 |
-
# The format is <|system|>...<|user|>...<|assistant|>
|
25 |
-
chat = [
|
26 |
-
{"role": "user", "content": prompt}
|
27 |
-
]
|
28 |
formatted_prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
29 |
-
|
30 |
-
# Tokenize the formatted prompt
|
31 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
32 |
-
|
33 |
-
# Generate text
|
34 |
with torch.no_grad():
|
35 |
outputs = model.generate(
|
36 |
**inputs,
|
@@ -40,47 +25,56 @@ def generate_text(prompt, max_new_tokens, temperature, top_p):
|
|
40 |
top_p=float(top_p),
|
41 |
eos_token_id=tokenizer.eos_token_id
|
42 |
)
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
if assistant_start_index != -1:
|
52 |
-
response = decoded_output[assistant_start_index + len(assistant_marker):].strip()
|
53 |
-
else:
|
54 |
-
# Fallback if the marker isn't found (should be rare)
|
55 |
-
response = "Could not parse the model's response."
|
56 |
-
|
57 |
-
print(f"Generated response: {response}")
|
58 |
-
return response
|
59 |
|
60 |
-
# --- Gradio
|
61 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
62 |
-
gr.Markdown("#
|
63 |
-
gr.Markdown("
|
64 |
-
|
65 |
-
with gr.Column():
|
66 |
-
prompt_input = gr.Textbox(
|
67 |
-
label="Your Prompt",
|
68 |
-
placeholder="Explain the importance of bees in the ecosystem."
|
69 |
-
)
|
70 |
-
|
71 |
-
with gr.Accordion("Generation Parameters", open=False):
|
72 |
-
max_new_tokens_slider = gr.Slider(minimum=50, maximum=512, value=256, step=1, label="Max New Tokens")
|
73 |
-
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature")
|
74 |
-
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P (Nucleus Sampling)")
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# ---
|
86 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
import webbrowser # 用於開啟網頁地圖連結
|
5 |
|
6 |
+
# --- 模型配置 (CPU TinyLlama) ---
|
|
|
7 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
8 |
+
print("Loading TinyLlama model and tokenizer...")
|
|
|
|
|
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
print("TinyLlama model and tokenizer loaded.")
|
12 |
|
13 |
+
# --- 文字生成函數 ---
|
14 |
def generate_text(prompt, max_new_tokens, temperature, top_p):
|
15 |
+
print(f"Generating TinyLlama response for prompt: '{prompt}'")
|
16 |
+
chat = [{"role": "user", "content": prompt}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
formatted_prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
18 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
|
|
|
|
19 |
with torch.no_grad():
|
20 |
outputs = model.generate(
|
21 |
**inputs,
|
|
|
25 |
top_p=float(top_p),
|
26 |
eos_token_id=tokenizer.eos_token_id
|
27 |
)
|
28 |
+
decoded_output = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True)
|
29 |
+
print(f"Generated response: {decoded_output}")
|
30 |
+
return decoded_output.strip()
|
31 |
|
32 |
+
# --- 地圖生成函數 (開啟 Google 地圖網頁) ---
|
33 |
+
def show_map(location_query):
|
34 |
+
"""開啟包含指定地點的 Google 地圖網頁。"""
|
35 |
+
base_url = "https://www.google.com/maps/search/?api=1&query="
|
36 |
+
map_url = base_url + location_query.replace(" ", "+")
|
37 |
+
webbrowser.open_new_tab(map_url)
|
38 |
+
return f"已在您的預設瀏覽器中開啟 {location_query} 的地圖。"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# --- Gradio 介面 ---
|
41 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
42 |
+
gr.Markdown("# 多功能應用:文字生成與地圖顯示")
|
43 |
+
gr.Markdown("這個應用程式可以生成文字,也可以根據您輸入的地點顯示地圖。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
with gr.TabbedInterface(["文字生成", "顯示地圖"]) as tabbed:
|
46 |
+
with gr.TabItem("文字生成"):
|
47 |
+
gr.Markdown("## 使用 TinyLlama 生成文字")
|
48 |
+
with gr.Column():
|
49 |
+
prompt_input = gr.Textbox(
|
50 |
+
label="您的提示詞",
|
51 |
+
placeholder="請輸入您想讓模型接續的文字..."
|
52 |
+
)
|
53 |
+
with gr.Accordion("生成參數", open=False):
|
54 |
+
max_new_tokens_slider = gr.Slider(minimum=50, maximum=512, value=256, step=1, label="最大生成 Token 數")
|
55 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="溫度 (Temperature)")
|
56 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P (Nucleus Sampling)")
|
57 |
+
generate_button = gr.Button("生成文字 ✨", variant="primary")
|
58 |
+
output_text = gr.Textbox(label="模型的回應", lines=10, interactive=False)
|
59 |
+
generate_button.click(
|
60 |
+
fn=generate_text,
|
61 |
+
inputs=[prompt_input, max_new_tokens_slider, temperature_slider, top_p_slider],
|
62 |
+
outputs=output_text
|
63 |
+
)
|
64 |
|
65 |
+
with gr.TabItem("顯示地圖"):
|
66 |
+
gr.Markdown("## 顯示指定地點的地圖")
|
67 |
+
location_input = gr.Textbox(
|
68 |
+
label="輸入地點名稱",
|
69 |
+
placeholder="例如:台北 101, New York Central Park, 東京鐵塔"
|
70 |
+
)
|
71 |
+
show_map_button = gr.Button("顯示地圖 🗺️", variant="primary")
|
72 |
+
map_output = gr.Textbox(label="地圖顯示訊息", interactive=False)
|
73 |
+
show_map_button.click(
|
74 |
+
fn=show_map,
|
75 |
+
inputs=location_input,
|
76 |
+
outputs=map_output
|
77 |
+
)
|
78 |
|
79 |
+
# --- 啟動 Gradio 應用 ---
|
80 |
demo.launch()
|