Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
4 |
|
5 |
# --- 模型配置 (CPU TinyLlama) ---
|
6 |
-
# 這部分保持不變
|
7 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
8 |
-
print("
|
9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
-
print("
|
12 |
|
13 |
-
# ---
|
14 |
-
|
15 |
-
def
|
16 |
-
|
17 |
chat = [{"role": "user", "content": prompt}]
|
18 |
formatted_prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
19 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
@@ -26,68 +26,85 @@ def generate_text(prompt, max_new_tokens, temperature, top_p):
|
|
26 |
top_p=float(top_p),
|
27 |
eos_token_id=tokenizer.eos_token_id
|
28 |
)
|
29 |
-
# 修正解碼方式以只回傳模型生成的部分
|
30 |
response = tokenizer.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
31 |
-
print(f"Generated response: {response}")
|
32 |
return response.strip()
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
def show_map(location_query):
|
37 |
-
"""根據地點名稱生成一個 Google 地圖的 URL"""
|
38 |
if not location_query:
|
39 |
-
return "
|
40 |
base_url = "https://www.google.com/maps/search/?api=1&query="
|
41 |
-
# 將地點名稱進行 URL 編碼,避免特殊字元問題
|
42 |
-
from urllib.parse import quote
|
43 |
map_url = base_url + quote(location_query)
|
44 |
-
# 使用 Markdown 格式回傳一個可點擊的連結
|
45 |
return f"點擊這裡查看 **{location_query}** 的地圖:\n[在 Google 地圖中開啟]({map_url})"
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
map_output = gr.Markdown(label="地圖連結")
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
outputs=output_text
|
86 |
)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
|
93 |
# --- 啟動 Gradio 應用 ---
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
from urllib.parse import quote
|
5 |
|
6 |
# --- 模型配置 (CPU TinyLlama) ---
|
|
|
7 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
8 |
+
print("正在載入 TinyLlama 模型與分詞器,請稍候...")
|
9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
print("模型與分詞器載入完成。")
|
12 |
|
13 |
+
# --- 核心功能函數 ---
|
14 |
+
|
15 |
+
def llm_generate(prompt, max_new_tokens=256, temperature=0.7, top_p=0.9):
|
16 |
+
"""基礎的語言模型文字生成函數"""
|
17 |
chat = [{"role": "user", "content": prompt}]
|
18 |
formatted_prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
19 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
|
|
26 |
top_p=float(top_p),
|
27 |
eos_token_id=tokenizer.eos_token_id
|
28 |
)
|
|
|
29 |
response = tokenizer.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
|
|
30 |
return response.strip()
|
31 |
|
32 |
+
def get_map_link(location_query):
|
33 |
+
"""根據地點名稱生成 Google 地圖的 URL"""
|
|
|
|
|
34 |
if not location_query:
|
35 |
+
return ""
|
36 |
base_url = "https://www.google.com/maps/search/?api=1&query="
|
|
|
|
|
37 |
map_url = base_url + quote(location_query)
|
|
|
38 |
return f"點擊這裡查看 **{location_query}** 的地圖:\n[在 Google 地圖中開啟]({map_url})"
|
39 |
|
40 |
+
def unified_processor(query):
|
41 |
+
"""
|
42 |
+
統一處理函數:接收使用者輸入,同時生成地點描述和地圖連結。
|
43 |
+
"""
|
44 |
+
if not query:
|
45 |
+
return "請輸入一個地點或一段描述。", ""
|
46 |
+
|
47 |
+
print(f"正在處理查詢:'{query}'")
|
48 |
+
|
49 |
+
# 步驟 1: 讓模型生成關於這個地點的描述
|
50 |
+
description_prompt = f"請用繁體中文,生動地介紹一下「{query}」這個地方的特色、歷史或是有趣的景點。"
|
51 |
+
generated_description = llm_generate(description_prompt)
|
52 |
+
|
53 |
+
# 步驟 2: 產生該地點的地圖連結
|
54 |
+
map_link_markdown = get_map_link(query)
|
55 |
+
|
56 |
+
# 步驟 3: 讓模型推薦附近的景點
|
57 |
+
recommendation_prompt = f"我在「{query}」這個地方,請用條列的方式,推薦3個附近的必去景點或必吃美食。"
|
58 |
+
generated_recommendations = llm_generate(recommendation_prompt)
|
59 |
+
|
60 |
+
# 組合最終的文字輸出
|
61 |
+
final_text_output = (
|
62 |
+
f"### 關於「{query}」\n"
|
63 |
+
f"{generated_description}\n\n"
|
64 |
+
f"### 附近推薦\n"
|
65 |
+
f"{generated_recommendations}"
|
66 |
+
)
|
67 |
+
|
68 |
+
return final_text_output, map_link_markdown
|
69 |
+
|
70 |
+
# --- Gradio 介面 (整合版) ---
|
71 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
72 |
+
gr.Markdown(
|
73 |
+
"""
|
74 |
+
# 🗺️ AI 智慧導遊 ✨
|
75 |
+
輸入一個地點,AI 將為您生成生動的介紹、推薦附近景點,並附上地圖!
|
76 |
+
"""
|
77 |
+
)
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
query_input = gr.Textbox(
|
81 |
+
label="請輸入地點名稱或描述",
|
82 |
+
placeholder="例如:九份老街、有著巨大玻璃金字塔的博物館..."
|
83 |
+
)
|
84 |
+
|
85 |
+
process_button = gr.Button("開始導覽 ✨", variant="primary")
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column(scale=2):
|
89 |
+
text_output = gr.Markdown(label="AI 導覽介紹")
|
90 |
+
with gr.Column(scale=1):
|
91 |
map_output = gr.Markdown(label="地圖連結")
|
92 |
|
93 |
+
process_button.click(
|
94 |
+
fn=unified_processor,
|
95 |
+
inputs=query_input,
|
96 |
+
outputs=[text_output, map_output]
|
|
|
97 |
)
|
98 |
+
|
99 |
+
gr.Examples(
|
100 |
+
examples=[
|
101 |
+
"東京迪士尼樂園",
|
102 |
+
"羅浮宮",
|
103 |
+
"台灣的阿里山",
|
104 |
+
"一個可以看到極光的玻璃屋飯店"
|
105 |
+
],
|
106 |
+
inputs=query_input,
|
107 |
+
label="試試看這些例子"
|
108 |
)
|
109 |
|
110 |
# --- 啟動 Gradio 應用 ---
|