cheeseman182 commited on
Commit
aa1e885
·
verified ·
1 Parent(s): b260759

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +2 -8
  2. media.py +152 -0
  3. requirements.txt +9 -0
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Generative Suite
3
- emoji: 🐠
4
- colorFrom: blue
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 5.38.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Generative_Suite
3
+ app_file: media.py
 
 
4
  sdk: gradio
5
  sdk_version: 5.38.0
 
 
6
  ---
 
 
media.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- LIBRARIES ---
2
+ import torch
3
+ import gradio as gr
4
+ import random
5
+ import time
6
+ from diffusers import AutoPipelineForText2Image, TextToVideoSDPipeline
7
+ import gc
8
+ import os
9
+ import imageio
10
+
11
+ # --- AUTHENTICATION FOR HUGGING FACE SPACES ---
12
+ # This will read the token from a "Secret" you set in your Space's settings
13
+ # It's more secure and the correct way to do it on HF Spaces.
14
+ try:
15
+ from huggingface_hub import login
16
+ HF_TOKEN = os.environ.get('HF_TOKEN')
17
+ if HF_TOKEN:
18
+ login(token=HF_TOKEN)
19
+ print("✅ Hugging Face Authentication successful.")
20
+ else:
21
+ print("⚠️ Hugging Face token not found in Space Secrets. Gated models may not be available.")
22
+ except ImportError:
23
+ print("Could not import huggingface_hub. Please ensure it's in requirements.txt")
24
+
25
+ # --- CONFIGURATION & STATE ---
26
+ available_models = {
27
+ "Fast Image (SDXL Turbo)": "stabilityai/sdxl-turbo",
28
+ "Quality Image (SDXL)": "stabilityai/stable-diffusion-xl-base-1.0",
29
+ "Video (Zeroscope)": "cerspense/zeroscope-v2-576w"
30
+ }
31
+ model_state = { "current_pipe": None, "loaded_model_name": None }
32
+
33
+
34
+ # --- CORE GENERATION FUNCTION ---
35
+ # This is a generator function, which yields updates to the UI.
36
+ def generate_media(model_key, prompt, negative_prompt, steps, cfg_scale, width, height, seed, num_frames):
37
+ # --- Model Loading Logic ---
38
+ # If the requested model isn't the one we have loaded, switch them.
39
+ if model_state.get("loaded_model_name") != model_key:
40
+ print(f"Switching to {model_key}. Unloading previous model...")
41
+ yield {status_textbox: f"Unloading previous model..."} # UI Update
42
+ if model_state.get("current_pipe"):
43
+ del model_state["current_pipe"]
44
+ gc.collect()
45
+ torch.cuda.empty_cache()
46
+
47
+ model_id = available_models[model_key]
48
+ print(f"Loading {model_id}...")
49
+ yield {status_textbox: f"Loading {model_id}... This can take a minute."} # UI Update
50
+
51
+ # Load the correct pipeline based on model type
52
+ if "Image" in model_key:
53
+ pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
54
+ elif "Video" in model_key:
55
+ pipe = TextToVideoSDPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
56
+
57
+ pipe.to("cuda")
58
+ # Offload larger models to save VRAM, but keep fast models fully on GPU
59
+ if "Turbo" not in model_key and "Video" not in model_key:
60
+ pipe.enable_model_cpu_offload()
61
+
62
+ model_state["current_pipe"] = pipe
63
+ model_state["loaded_model_name"] = model_key
64
+ print("✅ Model loaded successfully.")
65
+
66
+ pipe = model_state["current_pipe"]
67
+ generator = torch.Generator("cuda").manual_seed(seed)
68
+ yield {status_textbox: f"Generating with {model_key}..."} # UI Update
69
+
70
+ # --- Generation Logic ---
71
+ if "Image" in model_key:
72
+ print("Generating image...")
73
+ if "Turbo" in model_key: # Special settings for SDXL Turbo
74
+ num_steps, guidance_scale = 1, 0.0
75
+ else:
76
+ num_steps, guidance_scale = int(steps), float(cfg_scale)
77
+
78
+ image = pipe(
79
+ prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_steps,
80
+ guidance_scale=guidance_scale, width=int(width), height=int(height), generator=generator
81
+ ).images[0]
82
+ print("✅ Image generation complete.")
83
+ yield {output_image: image, output_video: None, status_textbox: f"Seed used: {seed}"}
84
+
85
+ elif "Video" in model_key:
86
+ print("Generating video...")
87
+ video_frames = pipe(prompt=prompt, num_inference_steps=int(steps), height=320, width=576, num_frames=int(num_frames), generator=generator).frames
88
+
89
+ video_path = f"/tmp/video_{seed}.mp4"
90
+ imageio.mimsave(video_path, video_frames, fps=12)
91
+ print(f"✅ Video saved to {video_path}")
92
+ yield {output_image: None, output_video: video_path, status_textbox: f"Seed used: {seed}"}
93
+
94
+
95
+ # --- GRADIO USER INTERFACE ---
96
+ with gr.Blocks(theme='gradio/soft') as demo:
97
+ gr.Markdown("# The Generative Media Suite")
98
+ gr.Markdown("Create fast images, high-quality images, or short videos. Created by cheeseman182.")
99
+ seed_state = gr.State(-1)
100
+
101
+ with gr.Row():
102
+ with gr.Column(scale=2):
103
+ model_selector = gr.Radio(label="Select Model", choices=list(available_models.keys()), value=list(available_models.keys())[0])
104
+ prompt_input = gr.Textbox(label="Prompt", lines=4, placeholder="An astronaut riding a horse on Mars, cinematic...")
105
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, deformed, watermark, text")
106
+
107
+ with gr.Accordion("Settings", open=True):
108
+ steps_slider = gr.Slider(1, 100, 30, step=1, label="Inference Steps")
109
+ cfg_slider = gr.Slider(0.0, 15.0, 7.5, step=0.5, label="Guidance Scale (CFG)")
110
+ with gr.Row():
111
+ width_slider = gr.Slider(256, 1024, 768, step=64, label="Width")
112
+ height_slider = gr.Slider(256, 1024, 768, step=64, label="Height")
113
+ num_frames_slider = gr.Slider(12, 48, 24, step=4, label="Video Frames", visible=False)
114
+ seed_input = gr.Number(-1, label="Seed (-1 for random)")
115
+
116
+ generate_button = gr.Button("Generate", variant="primary")
117
+
118
+ with gr.Column(scale=3):
119
+ output_image = gr.Image(label="Image Result", interactive=False, height="60vh", visible=True)
120
+ output_video = gr.Video(label="Video Result", interactive=False, height="60vh", visible=False)
121
+ status_textbox = gr.Textbox(label="Status", interactive=False)
122
+
123
+ # --- UI Logic ---
124
+ def update_ui_on_model_change(model_key):
125
+ is_video = "Video" in model_key
126
+ is_turbo = "Turbo" in model_key
127
+ return {
128
+ steps_slider: gr.update(interactive=not is_turbo, value=1 if is_turbo else 30),
129
+ cfg_slider: gr.update(interactive=not is_turbo, value=0.0 if is_turbo else 7.5),
130
+ width_slider: gr.update(visible=not is_video),
131
+ height_slider: gr.update(visible=not is_video),
132
+ num_frames_slider: gr.update(visible=is_video),
133
+ output_image: gr.update(visible=not is_video),
134
+ output_video: gr.update(visible=is_video)
135
+ }
136
+ model_selector.change(update_ui_on_model_change, model_selector, [steps_slider, cfg_slider, width_slider, height_slider, num_frames_slider, output_image, output_video])
137
+
138
+ # --- Button Logic ---
139
+ # This chain first sets the seed, then calls the main generation function.
140
+ click_event = generate_button.click(
141
+ fn=lambda s: (s if s != -1 else random.randint(0, 2**32 - 1)),
142
+ inputs=seed_input,
143
+ outputs=seed_state,
144
+ queue=False
145
+ ).then(
146
+ fn=generate_media,
147
+ inputs=[model_selector, prompt_input, negative_prompt_input, steps_slider, cfg_slider, width_slider, height_slider, seed_state, num_frames_slider],
148
+ outputs=[output_image, output_video, status_textbox]
149
+ )
150
+
151
+ # This is the correct way to launch on Hugging Face Spaces
152
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ --find-links https://download.pytorch.org/whl/cu121
2
+ torch==2.3.1+cu121
3
+ torchvision==0.18.1+cu121
4
+ bitsandbytes==0.43.1
5
+ transformers==4.41.2
6
+ accelerate==0.31.0
7
+ diffusers==0.29.0
8
+ gradio==4.36.1
9
+ imageio[ffmpeg]