|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
|
|
os.environ["RWKV_V7_ON"] = '1' |
|
os.environ['RWKV_JIT_ON'] = '1' |
|
os.environ["RWKV_CUDA_ON"] = '0' |
|
|
|
from huggingface_hub import hf_hub_download |
|
from rwkv.model import RWKV |
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS |
|
|
|
load_dotenv() |
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
self.graph = build_graph() |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
messages = [HumanMessage(content=question)] |
|
messages = self.graph.invoke({"messages": messages}) |
|
answer = messages['messages'][-1].content |
|
return answer[14:] |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "rwkv"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
|
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
elif provider == "rwkv": |
|
|
|
title = "rwkv7-g1-1.5b-20250429-ctx4096" |
|
pth = hf_hub_download(repo_id="BlinkDL/rwkv7-g1", filename=f"{title}.pth") |
|
model_path = pth.replace(".pth", "") |
|
|
|
raw_llm = RWKV(model=model_path, strategy='cpu fp16') |
|
pipeline = PIPELINE(raw_llm, "rwkv_vocab_v20230424") |
|
|
|
class RWKVWithTools: |
|
def __init__(self, pipeline, system_prompt: str): |
|
self.pipeline = pipeline |
|
self.system_prompt = system_prompt |
|
self.tools = [] |
|
|
|
def bind_tools(self, tools): |
|
self.tools = tools |
|
return self |
|
|
|
def invoke(self, messages): |
|
|
|
specs = [] |
|
for t in self.tools: |
|
specs.append(f"- {t.name}({getattr(t, 'args_schema', {})}): {t.description}") |
|
|
|
header = ( |
|
f"{self.system_prompt}\n\n" |
|
"TOOLS AVAILABLE:\n" |
|
+ "\n".join(specs) |
|
+ "\n\n" |
|
"To call a tool, respond exactly with:\n" |
|
"`<tool_name>(arg1=…,arg2=…)` and nothing else.\n\n" |
|
) |
|
|
|
|
|
convo = "\n".join( |
|
f"{'User:' if isinstance(m, HumanMessage) else 'Assistant:'} {m.content}" |
|
for m in messages |
|
) |
|
|
|
prompt = header + convo |
|
|
|
print(f'Prompt: {prompt}') |
|
|
|
|
|
out_str = self.pipeline.generate(prompt, token_count=300) |
|
|
|
print(f'Response: {out_str}') |
|
|
|
return out_str |
|
|
|
llm = RWKVWithTools(pipeline, system_prompt=system_prompt) |
|
|
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |