Spaces:
Running
Running
app.py
Browse files
app.py
CHANGED
@@ -3,158 +3,234 @@ import gradio as gr
|
|
3 |
import wikipedia
|
4 |
import numpy as np
|
5 |
import faiss
|
6 |
-
from langdetect import detect
|
7 |
from gtts import gTTS
|
8 |
-
from transformers import pipeline
|
9 |
-
from sentence_transformers import SentenceTransformer
|
10 |
import tempfile
|
|
|
11 |
import speech_recognition as sr
|
12 |
from pydub import AudioSegment
|
13 |
-
from
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
def translate(text, src, tgt):
|
33 |
-
if src == tgt:
|
34 |
-
|
35 |
-
if
|
36 |
-
text = models['to_en'](text)[0]['translation_text']
|
37 |
-
if f'en_to_{tgt}' in models:
|
38 |
-
return models[f'en_to_{tgt}'](text)[0]['translation_text']
|
39 |
return text
|
40 |
|
41 |
-
def
|
42 |
-
tts = gTTS(text=text, lang=lang)
|
43 |
-
path = tempfile.mktemp(suffix='.mp3')
|
44 |
-
tts.save(path)
|
45 |
-
return path
|
46 |
-
|
47 |
-
def chunk_text(text, max_words=100):
|
48 |
-
sentences = text.split('. ')
|
49 |
-
chunks, current, length = [], [], 0
|
50 |
-
for sent in sentences:
|
51 |
-
words = sent.split()
|
52 |
-
if length + len(words) > max_words:
|
53 |
-
chunks.append(' '.join(current))
|
54 |
-
current, length = [sent], len(words)
|
55 |
-
else:
|
56 |
-
current.append(sent)
|
57 |
-
length += len(words)
|
58 |
-
if current: chunks.append(' '.join(current))
|
59 |
-
return chunks
|
60 |
-
|
61 |
-
def build_faiss_index(chunks, model):
|
62 |
-
emb = model.encode(chunks, convert_to_numpy=True)
|
63 |
-
index = faiss.IndexFlatL2(emb.shape[1])
|
64 |
-
index.add(emb)
|
65 |
-
return index
|
66 |
-
|
67 |
-
@lru_cache(maxsize=20)
|
68 |
-
def prepare_faiss_for_topic(topic):
|
69 |
-
wikipedia.set_lang('en')
|
70 |
-
page = wikipedia.page(topic)
|
71 |
-
chunks = chunk_text(page.content) # Use full content, no slicing limit
|
72 |
-
return chunks, build_faiss_index(chunks, models['encoder'])
|
73 |
-
|
74 |
-
def retrieve_context(q, idx, chunks, model, top_k=5):
|
75 |
-
emb = model.encode([q], convert_to_numpy=True)
|
76 |
-
_, inds = idx.search(emb, top_k)
|
77 |
-
return ' '.join(chunks[i] for i in inds[0])
|
78 |
-
|
79 |
-
# --- Main Q&A function ---
|
80 |
-
def qa_system(audio, text_q, topic, lang, history):
|
81 |
-
q = ''
|
82 |
-
if audio:
|
83 |
-
try:
|
84 |
-
r = sr.Recognizer()
|
85 |
-
wav = tempfile.mktemp('.wav')
|
86 |
-
AudioSegment.from_file(audio).export(wav, format='wav')
|
87 |
-
with sr.AudioFile(wav) as src:
|
88 |
-
q = r.recognize_google(r.record(src))
|
89 |
-
except Exception as e:
|
90 |
-
return f"β Could not transcribe audio: {e}", None, history, ''
|
91 |
-
elif text_q:
|
92 |
-
q = text_q.strip()
|
93 |
-
else:
|
94 |
-
return 'β Please speak or type your question.', None, history, ''
|
95 |
-
|
96 |
try:
|
97 |
-
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
history.append((q, ans))
|
117 |
-
chat = '\n\n'.join(f"Q{i+1}: {x}\nA{i+1}: {y}" for i,(x,y) in enumerate(history))
|
118 |
-
return f'You asked: {q}\n\nAnswer: {ans}', audio_path, history, chat
|
119 |
|
120 |
-
|
121 |
-
return None, '', None, [], ''
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
.gradio-container {
|
126 |
-
background
|
127 |
-
border: 3px solid #
|
128 |
-
border-radius:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
padding: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
}
|
131 |
"""
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
<
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
|
|
149 |
with gr.Row():
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import wikipedia
|
4 |
import numpy as np
|
5 |
import faiss
|
|
|
6 |
from gtts import gTTS
|
|
|
|
|
7 |
import tempfile
|
8 |
+
from langdetect import detect
|
9 |
import speech_recognition as sr
|
10 |
from pydub import AudioSegment
|
11 |
+
from transformers import pipeline # SentenceTransformer is not here
|
12 |
+
from sentence_transformers import SentenceTransformer # Correct import
|
13 |
+
import os
|
14 |
+
from pydub.silence import split_on_silence
|
15 |
+
import time
|
16 |
+
import pytesseract
|
17 |
+
|
18 |
+
|
19 |
+
# Initialize models
|
20 |
+
models = {
|
21 |
+
'translator': pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en'),
|
22 |
+
'answer_gen': pipeline('text2text-generation', model='google/flan-t5-base'),
|
23 |
+
'encoder': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
24 |
+
}
|
25 |
+
|
26 |
+
# Add translation models
|
27 |
+
for lang in ['fr', 'ar', 'zh', 'es']:
|
28 |
+
models[f'en_to_{lang}'] = pipeline(f'translation_en_to_{lang}',
|
29 |
+
model=f'Helsinki-NLP/opus-mt-en-{lang}')
|
30 |
|
31 |
def translate(text, src, tgt):
|
32 |
+
if src == tgt: return text
|
33 |
+
if src != 'en': text = models['translator'](text)[0]['translation_text']
|
34 |
+
if f'en_to_{tgt}' in models: return models[f'en_to_{tgt}'](text)[0]['translation_text']
|
|
|
|
|
|
|
35 |
return text
|
36 |
|
37 |
+
def text_to_speech(text, lang):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
try:
|
39 |
+
tts = gTTS(text=text, lang=lang)
|
40 |
+
audio_path = tempfile.mktemp(suffix='.mp3')
|
41 |
+
tts.save(audio_path)
|
42 |
+
return audio_path
|
43 |
except Exception as e:
|
44 |
+
print(f"TTS Error: {e}")
|
45 |
+
return None
|
46 |
+
|
47 |
+
def process_audio(audio_path):
|
48 |
+
recognizer = sr.Recognizer()
|
49 |
+
sound = AudioSegment.from_file(audio_path)
|
50 |
+
chunks = split_on_silence(sound,
|
51 |
+
min_silence_len=500,
|
52 |
+
silence_thresh=sound.dBFS-14,
|
53 |
+
keep_silence=500
|
54 |
+
)
|
55 |
+
|
56 |
+
full_text = ""
|
57 |
+
for chunk in chunks:
|
58 |
+
chunk_path = tempfile.mktemp(suffix='.wav')
|
59 |
+
chunk.export(chunk_path, format="wav")
|
60 |
+
with sr.AudioFile(chunk_path) as source:
|
61 |
+
audio = recognizer.record(source)
|
62 |
+
try:
|
63 |
+
text = recognizer.recognize_google(audio)
|
64 |
+
full_text += f" {text}"
|
65 |
+
except:
|
66 |
+
continue
|
67 |
+
os.unlink(chunk_path)
|
68 |
+
|
69 |
+
return full_text.strip() if full_text else None
|
70 |
+
|
71 |
+
def get_wikipedia_content(topic):
|
72 |
+
try:
|
73 |
+
wikipedia.set_lang('en')
|
74 |
+
try:
|
75 |
+
page = wikipedia.page(topic, auto_suggest=False)
|
76 |
+
return page.summary[:1000]
|
77 |
+
except wikipedia.exceptions.DisambiguationError as e:
|
78 |
+
page = wikipedia.page(e.options[0])
|
79 |
+
return page.summary[:1000]
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Wikipedia error: {e}")
|
82 |
+
return None
|
83 |
+
|
84 |
+
def generate_response(text, topic, lang):
|
85 |
+
context = get_wikipedia_content(topic)
|
86 |
+
if not context:
|
87 |
+
return "Could not find information. Please try another topic.", None
|
88 |
+
|
89 |
+
prompt = f"Context: {context}\nQuestion: {text}\nAnswer:"
|
90 |
+
answer = models['answer_gen'](prompt, max_length=200)[0]['generated_text']
|
91 |
+
translated = translate(answer, 'en', lang) if lang != 'en' else answer
|
92 |
+
audio_path = text_to_speech(translated, lang)
|
93 |
+
|
94 |
+
return translated, audio_path
|
95 |
+
|
96 |
+
def handle_interaction(audio, text, topic, lang, chat_history):
|
97 |
+
if audio is not None:
|
98 |
+
recognized_text = process_audio(audio)
|
99 |
+
if recognized_text:
|
100 |
+
text = recognized_text
|
101 |
+
else:
|
102 |
+
chat_history.append(("", "Could not understand audio. Please try again."))
|
103 |
+
return chat_history, "", None
|
104 |
|
105 |
+
if not text.strip():
|
106 |
+
chat_history.append(("", "Please enter a question."))
|
107 |
+
return chat_history, "", None
|
108 |
|
109 |
+
response, audio_output = generate_response(text, topic, lang)
|
110 |
+
chat_history.append((text, response))
|
|
|
|
|
|
|
111 |
|
112 |
+
return chat_history, "", audio_output
|
|
|
113 |
|
114 |
+
# Custom CSS with light blue and dark blue theme
|
115 |
+
custom_css = """
|
116 |
.gradio-container {
|
117 |
+
background: #f0f8ff !important;
|
118 |
+
border: 3px solid #00008b !important;
|
119 |
+
border-radius: 10px !important;
|
120 |
+
font-family: 'Arial', sans-serif;
|
121 |
+
}
|
122 |
+
.gr-box {
|
123 |
+
background-color: #e6f2ff !important;
|
124 |
+
border: 2px solid #00008b !important;
|
125 |
+
border-radius: 8px !important;
|
126 |
+
}
|
127 |
+
.gr-button {
|
128 |
+
background-color: #4d94ff !important;
|
129 |
+
border: 2px solid #00008b !important;
|
130 |
+
color: white !important;
|
131 |
+
border-radius: 6px !important;
|
132 |
+
}
|
133 |
+
.gr-button:hover {
|
134 |
+
background-color: #1a75ff !important;
|
135 |
+
}
|
136 |
+
.gr-chatbot {
|
137 |
+
background-color: #e6f2ff !important;
|
138 |
+
border: 2px solid #00008b !important;
|
139 |
+
border-radius: 8px !important;
|
140 |
+
}
|
141 |
+
.gr-textbox, .gr-dropdown, .gr-audio {
|
142 |
+
background-color: #e6f2ff !important;
|
143 |
+
border: 2px solid #00008b !important;
|
144 |
+
border-radius: 6px !important;
|
145 |
+
}
|
146 |
+
.welcome-header {
|
147 |
+
text-align: center;
|
148 |
+
color: #00008b !important;
|
149 |
+
margin-bottom: 20px;
|
150 |
+
}
|
151 |
+
.welcome-message {
|
152 |
+
background-color: #e6f2ff;
|
153 |
padding: 20px;
|
154 |
+
border-radius: 10px;
|
155 |
+
border: 2px solid #00008b;
|
156 |
+
margin-bottom: 20px;
|
157 |
+
}
|
158 |
+
.avatar {
|
159 |
+
width: 80px;
|
160 |
+
height: 80px;
|
161 |
+
margin: 0 auto;
|
162 |
+
display: block;
|
163 |
}
|
164 |
"""
|
165 |
|
166 |
+
# Welcome page content
|
167 |
+
welcome_html = """
|
168 |
+
<div class="welcome-header">
|
169 |
+
<img src="https://i.imgur.com/6wBs5mO.png" class="avatar" alt="AI Assistant">
|
170 |
+
<h1>Welcome to Your Multilingual AI Assistant! π</h1>
|
171 |
+
</div>
|
172 |
+
<div class="welcome-message">
|
173 |
+
<h3>Hello! I'm your personal Wikipedia assistant π€</h3>
|
174 |
+
<p>I can help you find information on any topic in multiple languages. Here's what I can do:</p>
|
175 |
+
<ul>
|
176 |
+
<li>π Answer questions from Wikipedia knowledge</li>
|
177 |
+
<li>π£οΈ Understand both voice and text input</li>
|
178 |
+
<li>π Respond in English, French, Spanish, Chinese, or Arabic</li>
|
179 |
+
<li>π Speak answers back to you</li>
|
180 |
+
</ul>
|
181 |
+
<p>To get started, simply type your question or click the microphone to speak!</p>
|
182 |
+
</div>
|
183 |
+
"""
|
184 |
|
185 |
+
with gr.Blocks(css=custom_css, title="π Multilingual AI Assistant") as demo:
|
186 |
+
# Welcome page
|
187 |
+
gr.HTML(welcome_html)
|
188 |
|
189 |
+
# Main interface
|
190 |
with gr.Row():
|
191 |
+
with gr.Column(scale=1):
|
192 |
+
audio_input = gr.Audio(
|
193 |
+
sources=["microphone", "upload"],
|
194 |
+
type="filepath",
|
195 |
+
label="π€ Speak or upload audio",
|
196 |
+
interactive=True
|
197 |
+
)
|
198 |
+
topic_input = gr.Textbox(
|
199 |
+
"Artificial Intelligence",
|
200 |
+
label="π Wikipedia Topic"
|
201 |
+
)
|
202 |
+
lang_input = gr.Dropdown(
|
203 |
+
["en", "fr", "es", "zh", "ar"],
|
204 |
+
value="en",
|
205 |
+
label="π Output Language"
|
206 |
+
)
|
207 |
+
|
208 |
+
with gr.Column(scale=2):
|
209 |
+
chatbot = gr.Chatbot(label="Conversation")
|
210 |
+
text_input = gr.Textbox(
|
211 |
+
placeholder="Type your question here...",
|
212 |
+
label="βοΈ Or type here"
|
213 |
+
)
|
214 |
+
with gr.Row():
|
215 |
+
clear_btn = gr.Button("ποΈ Clear Chat")
|
216 |
+
submit_btn = gr.Button("π Submit", variant="primary")
|
217 |
+
|
218 |
+
audio_output = gr.Audio(label="π Answer", visible=True)
|
219 |
+
|
220 |
+
# Event handlers
|
221 |
+
submit_btn.click(
|
222 |
+
handle_interaction,
|
223 |
+
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
|
224 |
+
outputs=[chatbot, text_input, audio_output]
|
225 |
+
)
|
226 |
+
text_input.submit(
|
227 |
+
handle_interaction,
|
228 |
+
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
|
229 |
+
outputs=[chatbot, text_input, audio_output]
|
230 |
+
)
|
231 |
+
clear_btn.click(
|
232 |
+
lambda: ([], "", None),
|
233 |
+
outputs=[chatbot, text_input, audio_output]
|
234 |
+
)
|
235 |
+
|
236 |
+
demo.launch(share=True)
|