File size: 11,403 Bytes
d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 da59af8 d1eb676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# app.py
import gradio as gr
import pandas as pd
import requests
import io
import dask.dataframe as dd
from datasets import load_dataset, Image
from mlcroissant import Dataset as CroissantDataset
from huggingface_hub import get_token
import polars as pl
import warnings
import traceback
import json
import tempfile # Added for creating temporary files
# π€« Let's ignore those pesky warnings, shall we?
warnings.filterwarnings("ignore")
# --- βοΈ Configuration & Constants ---
DATASET_CONFIG = {
"caselaw": {
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
"methods": ["π¨ API (requests)", "π§ Dask", "π₯ Croissant"], "is_public": True,
},
"prompts": {
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
"methods": ["πΌ Pandas", "π¨ API (requests)", "π₯ Croissant"], "is_public": True,
},
"finance": {
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
"methods": ["πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
},
"medical": {
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
"methods": ["πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
},
"inscene": {
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
"methods": ["π€ Datasets", "πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
},
}
# --- ν¬ Helpers & Utility Functions ---
def get_auth_headers():
token = get_token()
return {"Authorization": f"Bearer {token}"} if token else {}
# --- β¨ FIXED: dataframe_to_outputs to use temporary files ---
def dataframe_to_outputs(df: pd.DataFrame):
"""
π Takes a DataFrame and transforms it into various formats.
Now uses temporary files for maximum Gradio compatibility.
"""
if df.empty:
return "No results found. π€·", None, None, "No results to copy."
df_str = df.astype(str)
markdown_output = df_str.to_markdown(index=False)
# Create a temporary CSV file
with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix='.csv', encoding='utf-8') as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
# Create a temporary XLSX file
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp_xlsx:
df.to_excel(tmp_xlsx.name, index=False, engine='openpyxl')
xlsx_path = tmp_xlsx.name
tab_delimited_output = df.to_csv(sep='\t', index=False)
return (
markdown_output,
csv_path,
xlsx_path,
tab_delimited_output,
)
def handle_error(e: Exception, request=None, response=None):
"""
π± Oh no! An error! This function now creates a detailed debug log.
"""
error_message = f"π¨ An error occurred: {str(e)}\n"
auth_tip = "π For gated datasets, did you log in? Try `huggingface-cli login` in your terminal."
full_trace = traceback.format_exc()
print(full_trace)
if "401" in str(e) or "Gated" in str(e):
error_message += auth_tip
debug_log = f"""--- π DEBUG LOG ---\nTraceback:\n{full_trace}\n\nException Type: {type(e).__name__}\nException Details: {e}\n"""
if request:
debug_log += f"""\n--- REQUEST ---\nMethod: {request.method}\nURL: {request.url}\nHeaders: {json.dumps(dict(request.headers), indent=2)}\n"""
if response is not None:
try:
response_text = json.dumps(response.json(), indent=2)
except json.JSONDecodeError:
response_text = response.text
debug_log += f"""\n--- RESPONSE ---\nStatus Code: {response.status_code}\nHeaders: {json.dumps(dict(response.headers), indent=2)}\nContent:\n{response_text}\n"""
return (
pd.DataFrame(), gr.Gallery(None), f"### π¨ Error\nAn error occurred. See the debug log below for details.",
"", None, None, "", f"```python\n# π¨ Error during execution:\n# {e}\n```",
gr.Code(value=debug_log, visible=True)
)
def search_dataframe(df: pd.DataFrame, query: str):
if not query:
return df.head(100)
string_cols = df.select_dtypes(include=['object', 'string']).columns
if string_cols.empty:
return pd.DataFrame()
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains(query, case=False, na=False)
return df[mask]
# --- π£ Data Fetching & Processing Functions ---
def fetch_data(dataset_key: str, access_method: str, query: str):
"""
π Main mission control. Always yields a tuple of 9 values to match the UI components.
"""
outputs = [pd.DataFrame(), None, "π Ready.", "", None, None, "", "", gr.Code(visible=False)]
req, res = None, None
try:
config = DATASET_CONFIG[dataset_key]
repo_id = config["name"]
if "API" in access_method:
all_results_df = pd.DataFrame()
MAX_PAGES = 5
PAGE_SIZE = 100
if not query:
MAX_PAGES = 1
outputs[2] = "β³ No search term. Fetching first 100 records as a sample..."
yield tuple(outputs)
for page in range(MAX_PAGES):
if query:
outputs[2] = f"β³ Searching page {page + 1}..."
yield tuple(outputs)
offset = page * PAGE_SIZE
url = f"https://datasets-server.huggingface.co/rows?dataset={repo_id}&config=default&split=train&offset={offset}&length={PAGE_SIZE}"
headers = get_auth_headers() if not config["is_public"] else {}
res = requests.get(url, headers=headers)
req = res.request
res.raise_for_status()
data = res.json()
if not data.get('rows'):
outputs[2] = "π No more data to search."
yield tuple(outputs)
break
# --- β¨ FIXED: JSON processing logic ---
# Extract the actual data from the 'row' key of each item in the list
rows_data = [item['row'] for item in data['rows']]
page_df = pd.json_normalize(rows_data)
found_in_page = search_dataframe(page_df, query)
if not found_in_page.empty:
all_results_df = pd.concat([all_results_df, found_in_page]).reset_index(drop=True)
outputs[0] = all_results_df
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(all_results_df)
outputs[2] = f"β
Found **{len(all_results_df)}** results so far..."
if dataset_key == 'inscene':
gallery_data = [(row['image'], row.get('text', '')) for _, row in all_results_df.iterrows() if 'image' in row and isinstance(row['image'], Image.Image)]
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
yield tuple(outputs)
outputs[2] = f"π Search complete. Found a total of **{len(all_results_df)}** results."
yield tuple(outputs)
return
outputs[2] = f"β³ Loading data via `{access_method}`..."
yield tuple(outputs)
df = pd.DataFrame()
if "Pandas" in access_method:
file_path = f"hf://datasets/{repo_id}/"
if repo_id == "fka/awesome-chatgpt-prompts": file_path += "prompts.csv"; df = pd.read_csv(file_path)
else:
try: df = pd.read_parquet(f"{file_path}data/train-00000-of-00001.parquet")
except:
try: df = pd.read_parquet(f"{file_path}train.parquet")
except: df = pd.read_json(f"{file_path}medical_o1_sft.json")
elif "Datasets" in access_method:
ds = load_dataset(repo_id, split='train', streaming=True).take(1000)
df = pd.DataFrame(ds)
outputs[2] = "π Searching loaded data..."
yield tuple(outputs)
final_df = search_dataframe(df, query)
outputs[0] = final_df
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(final_df)
outputs[2] = f"π Search complete. Found **{len(final_df)}** results."
if dataset_key == 'inscene' and not final_df.empty:
gallery_data = [(row['image'], row.get('text', '')) for _, row in final_df.iterrows() if 'image' in row and isinstance(row.get('image'), Image.Image)]
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
yield tuple(outputs)
except Exception as e:
yield handle_error(e, req, res)
# --- πΌοΈ UI Generation ---
def create_dataset_tab(dataset_key: str):
config = DATASET_CONFIG[dataset_key]
with gr.Tab(f"{config['emoji']} {dataset_key.capitalize()}"):
gr.Markdown(f"## {config['emoji']} Query the `{config['name']}` Dataset")
if not config['is_public']:
gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
with gr.Row():
access_method = gr.Radio(config['methods'], label="π Access Method", value=config['methods'][0])
query = gr.Textbox(label="π Search Query", placeholder="Enter any text to search, or leave blank for samples...")
fetch_button = gr.Button("π Go Fetch!")
status_output = gr.Markdown("π Ready to search.")
df_output = gr.DataFrame(label="π Results DataFrame", interactive=False, wrap=True)
gallery_output = gr.Gallery(visible=(dataset_key == 'inscene'), label="πΌοΈ Image Results")
with gr.Accordion("π View/Export Full Results", open=False):
markdown_output = gr.Markdown(label="π Markdown View")
with gr.Row():
csv_output = gr.File(label="β¬οΈ Download CSV")
xlsx_output = gr.File(label="β¬οΈ Download XLSX")
copy_output = gr.Code(label="π Copy-Paste (Tab-Delimited)")
code_output = gr.Code(label="π» Python Code Snippet", language="python")
debug_log_output = gr.Code(label="π Debug Log", visible=False)
fetch_button.click(
fn=fetch_data,
inputs=[gr.State(dataset_key), access_method, query],
outputs=[
df_output, gallery_output, status_output, markdown_output,
csv_output, xlsx_output, copy_output, code_output,
debug_log_output
]
)
# --- π Main App ---
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as demo:
gr.Markdown("# π€ Hugging Face Dataset Explorer")
gr.Markdown(
"Select a dataset, choose an access method, and type a query. "
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
)
with gr.Tabs():
for key in DATASET_CONFIG.keys():
create_dataset_tab(key)
if __name__ == "__main__":
demo.launch(debug=True)
|