Update app.py
Browse files
app.py
CHANGED
@@ -47,41 +47,26 @@ except ImportError:
|
|
47 |
POLARS_AVAILABLE = False
|
48 |
|
49 |
# --- βοΈ Configuration & Constants ---
|
50 |
-
def get_available_methods():
|
51 |
-
"""π§ Get available methods based on installed dependencies"""
|
52 |
-
base_methods = ["π¨ API (requests)", "πΌ Pandas"]
|
53 |
-
|
54 |
-
if DATASETS_AVAILABLE:
|
55 |
-
base_methods.append("π€ Datasets")
|
56 |
-
if POLARS_AVAILABLE:
|
57 |
-
base_methods.append("π§ Polars")
|
58 |
-
if DASK_AVAILABLE:
|
59 |
-
base_methods.append("π§ Dask")
|
60 |
-
if CROISSANT_AVAILABLE:
|
61 |
-
base_methods.append("π₯ Croissant")
|
62 |
-
|
63 |
-
return base_methods
|
64 |
-
|
65 |
DATASET_CONFIG = {
|
66 |
"caselaw": {
|
67 |
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
|
68 |
-
"methods":
|
69 |
},
|
70 |
"prompts": {
|
71 |
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
|
72 |
-
"methods":
|
73 |
},
|
74 |
"finance": {
|
75 |
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
|
76 |
-
"methods":
|
77 |
},
|
78 |
"medical": {
|
79 |
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
|
80 |
-
"methods":
|
81 |
},
|
82 |
"inscene": {
|
83 |
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
|
84 |
-
"methods":
|
85 |
},
|
86 |
}
|
87 |
|
@@ -211,11 +196,13 @@ else:
|
|
211 |
|
212 |
elif "Pandas" in access_method:
|
213 |
file_path = "prompts.csv" if repo_id == "fka/awesome-chatgpt-prompts" else "train.parquet"
|
|
|
|
|
214 |
return f'''# πΌ Pandas Access for {repo_id}
|
215 |
import pandas as pd
|
216 |
|
217 |
# You may need: huggingface-cli login
|
218 |
-
df = pd.
|
219 |
|
220 |
# Search for: "{query}"
|
221 |
if "{query}":
|
@@ -230,7 +217,33 @@ print(df.head())
|
|
230 |
'''
|
231 |
|
232 |
elif "Datasets" in access_method:
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
from datasets import load_dataset
|
235 |
import pandas as pd
|
236 |
|
@@ -358,65 +371,51 @@ def fetch_data(dataset_key: str, access_method: str, query: str):
|
|
358 |
elif "Datasets" in access_method:
|
359 |
if not DATASETS_AVAILABLE:
|
360 |
raise ImportError("datasets library not available. Install with: pip install datasets")
|
361 |
-
ds = load_dataset(repo_id, split='train', streaming=True).take(1000)
|
362 |
-
df = pd.DataFrame(ds)
|
363 |
|
364 |
-
|
365 |
-
if
|
366 |
-
|
367 |
-
outputs[2] = "β³ Loading with Polars..."
|
368 |
-
yield tuple(outputs)
|
369 |
-
if repo_id == "fka/awesome-chatgpt-prompts":
|
370 |
-
pl_df = pl.read_csv(f"hf://datasets/{repo_id}/prompts.csv")
|
371 |
-
else:
|
372 |
-
pl_df = pl.read_parquet(f"hf://datasets/{repo_id}/train.parquet")
|
373 |
-
df = pl_df.to_pandas()
|
374 |
-
|
375 |
-
elif "Dask" in access_method:
|
376 |
-
if not DASK_AVAILABLE:
|
377 |
-
raise ImportError("dask library not available. Install with: pip install dask")
|
378 |
-
outputs[2] = "β³ Loading with Dask..."
|
379 |
-
yield tuple(outputs)
|
380 |
-
dask_df = dd.read_json(f"hf://datasets/{repo_id}/**/*.jsonl.gz")
|
381 |
-
df = dask_df.head(1000) # Convert to pandas for processing
|
382 |
-
|
383 |
-
elif "Croissant" in access_method:
|
384 |
-
if not CROISSANT_AVAILABLE:
|
385 |
-
raise ImportError("mlcroissant library not available. Install with: pip install mlcroissant")
|
386 |
-
outputs[2] = "β³ Loading with Croissant..."
|
387 |
-
yield tuple(outputs)
|
388 |
-
|
389 |
-
try:
|
390 |
-
headers = get_auth_headers() if not config["is_public"] else {}
|
391 |
-
croissant_url = f"https://huggingface.co/api/datasets/{repo_id}/croissant"
|
392 |
-
response = requests.get(croissant_url, headers=headers)
|
393 |
-
response.raise_for_status()
|
394 |
-
jsonld = response.json()
|
395 |
-
|
396 |
-
# Suppress MLCroissant warnings during dataset creation
|
397 |
-
with warnings.catch_warnings():
|
398 |
-
warnings.simplefilter("ignore")
|
399 |
-
ds = CroissantDataset(jsonld=jsonld)
|
400 |
-
records = list(ds.records("default"))[:1000] # Take first 1000
|
401 |
-
df = pd.DataFrame(records)
|
402 |
-
|
403 |
-
except Exception as croissant_error:
|
404 |
-
# If Croissant fails, fall back to API method
|
405 |
-
outputs[2] = f"β οΈ Croissant method failed, falling back to API method..."
|
406 |
yield tuple(outputs)
|
407 |
|
408 |
-
#
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
418 |
else:
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
outputs[2] = "π Searching loaded data..."
|
422 |
yield tuple(outputs)
|
@@ -464,8 +463,10 @@ def create_dataset_tab(dataset_key: str):
|
|
464 |
|
465 |
# Show available methods for this dataset
|
466 |
available_methods = config['methods']
|
467 |
-
|
468 |
-
|
|
|
|
|
469 |
|
470 |
with gr.Row():
|
471 |
access_method = gr.Radio(
|
@@ -481,7 +482,10 @@ def create_dataset_tab(dataset_key: str):
|
|
481 |
fetch_button = gr.Button("π Go Fetch!")
|
482 |
status_output = gr.Markdown("π Ready to search.")
|
483 |
df_output = gr.DataFrame(label="π Results DataFrame", interactive=False, wrap=True)
|
484 |
-
|
|
|
|
|
|
|
485 |
|
486 |
with gr.Accordion("π View/Export Full Results", open=False):
|
487 |
markdown_output = gr.Markdown(label="π Markdown View")
|
@@ -512,44 +516,46 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as
|
|
512 |
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
|
513 |
)
|
514 |
|
515 |
-
# Show dependency status
|
516 |
def get_dependency_status():
|
517 |
-
status = "### π§
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
519 |
status += f"- **πΌ Pandas**: β
Available\n"
|
|
|
520 |
status += f"- **π€ Datasets**: {'β
Available' if DATASETS_AVAILABLE else 'β Not installed'}\n"
|
521 |
-
|
522 |
-
status += f"- **π§ Dask**: {'β
Available' if DASK_AVAILABLE else 'β Not installed'}\n"
|
523 |
-
status += f"- **π₯ Croissant**: {'β
Available' if CROISSANT_AVAILABLE else 'β Not installed'}\n"
|
524 |
-
status += f"- **π HF Authentication**: {'β
Available' if HF_HUB_AVAILABLE else 'β Not installed'}\n"
|
525 |
return status
|
526 |
|
527 |
with gr.Accordion("π§ Library Status & Quick Start Guide", open=False):
|
528 |
gr.Markdown(get_dependency_status())
|
529 |
gr.Markdown("""
|
530 |
-
### π Quick Start:
|
531 |
-
1. **π€ Prompts
|
532 |
-
2. **βοΈ Caselaw
|
533 |
-
3. **π° Finance
|
534 |
-
4. **π©Ί Medical
|
535 |
-
5. **πΌοΈ InScene
|
536 |
|
537 |
### π Authentication:
|
538 |
-
For gated datasets,
|
539 |
|
540 |
-
### π οΈ
|
541 |
- **π¨ API**: Fast, reliable, works without login (100 rows max)
|
542 |
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
|
543 |
-
- **π€ Datasets**:
|
544 |
-
-
|
545 |
-
- **π₯ Croissant**: Metadata-aware loading (has fallback to API)
|
546 |
|
547 |
-
###
|
548 |
-
|
549 |
-
```bash
|
550 |
-
pip install datasets polars dask mlcroissant GitPython
|
551 |
-
```
|
552 |
""")
|
|
|
|
|
|
|
553 |
|
554 |
with gr.Tabs():
|
555 |
for key in DATASET_CONFIG.keys():
|
|
|
47 |
POLARS_AVAILABLE = False
|
48 |
|
49 |
# --- βοΈ Configuration & Constants ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
DATASET_CONFIG = {
|
51 |
"caselaw": {
|
52 |
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
|
53 |
+
"methods": ["π¨ API (requests)"], "is_public": True,
|
54 |
},
|
55 |
"prompts": {
|
56 |
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
|
57 |
+
"methods": ["πΌ Pandas", "π¨ API (requests)"], "is_public": True,
|
58 |
},
|
59 |
"finance": {
|
60 |
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
|
61 |
+
"methods": ["πΌ Pandas", "π¨ API (requests)"], "is_public": False,
|
62 |
},
|
63 |
"medical": {
|
64 |
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
|
65 |
+
"methods": ["πΌ Pandas"], "is_public": False,
|
66 |
},
|
67 |
"inscene": {
|
68 |
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
|
69 |
+
"methods": ["π€ Datasets", "πΌοΈ Datasets with Images"], "is_public": False,
|
70 |
},
|
71 |
}
|
72 |
|
|
|
196 |
|
197 |
elif "Pandas" in access_method:
|
198 |
file_path = "prompts.csv" if repo_id == "fka/awesome-chatgpt-prompts" else "train.parquet"
|
199 |
+
read_function = "read_csv" if "csv" in file_path else "read_parquet"
|
200 |
+
|
201 |
return f'''# πΌ Pandas Access for {repo_id}
|
202 |
import pandas as pd
|
203 |
|
204 |
# You may need: huggingface-cli login
|
205 |
+
df = pd.{read_function}("hf://datasets/{repo_id}/{file_path}")
|
206 |
|
207 |
# Search for: "{query}"
|
208 |
if "{query}":
|
|
|
217 |
'''
|
218 |
|
219 |
elif "Datasets" in access_method:
|
220 |
+
if "Images" in access_method:
|
221 |
+
return f'''# πΌοΈ Datasets Library with Image Access for {repo_id}
|
222 |
+
from datasets import load_dataset
|
223 |
+
import pandas as pd
|
224 |
+
|
225 |
+
# You may need: huggingface-cli login
|
226 |
+
ds = load_dataset("{repo_id}", split="train", streaming=True)
|
227 |
+
data = list(ds.take(50)) # Smaller sample for images
|
228 |
+
df = pd.DataFrame(data)
|
229 |
+
|
230 |
+
# Process images
|
231 |
+
images = []
|
232 |
+
for item in data:
|
233 |
+
if 'image' in item and item['image'] is not None:
|
234 |
+
images.append((item['image'], item.get('text', '')))
|
235 |
+
|
236 |
+
print(f"Found {{len(df)}} records with {{len(images)}} images")
|
237 |
+
print(df.head())
|
238 |
+
|
239 |
+
# Display first image
|
240 |
+
if images:
|
241 |
+
first_image, caption = images[0]
|
242 |
+
first_image.show() # If PIL Image
|
243 |
+
print(f"Caption: {{caption}}")
|
244 |
+
'''
|
245 |
+
else:
|
246 |
+
return f'''# π€ Datasets Library Access for {repo_id}
|
247 |
from datasets import load_dataset
|
248 |
import pandas as pd
|
249 |
|
|
|
371 |
elif "Datasets" in access_method:
|
372 |
if not DATASETS_AVAILABLE:
|
373 |
raise ImportError("datasets library not available. Install with: pip install datasets")
|
|
|
|
|
374 |
|
375 |
+
# Special handling for image datasets
|
376 |
+
if dataset_key == 'inscene' and "Images" in access_method:
|
377 |
+
outputs[2] = "πΌοΈ Loading InScene dataset with image processing..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
yield tuple(outputs)
|
379 |
|
380 |
+
# Load with image processing
|
381 |
+
ds = load_dataset(repo_id, split='train', streaming=True)
|
382 |
+
data_list = list(ds.take(50)) # Smaller sample for images
|
383 |
+
df = pd.DataFrame(data_list)
|
384 |
+
|
385 |
+
# Process images for gallery display
|
386 |
+
gallery_data = []
|
387 |
+
for i, item in enumerate(data_list):
|
388 |
+
try:
|
389 |
+
if 'image' in item and item['image'] is not None:
|
390 |
+
image = item['image']
|
391 |
+
caption = item.get('text', f'Image {i+1}')
|
392 |
+
|
393 |
+
# Convert PIL Image to displayable format
|
394 |
+
if hasattr(image, 'save'):
|
395 |
+
gallery_data.append((image, caption))
|
396 |
+
elif isinstance(image, str):
|
397 |
+
gallery_data.append((image, caption))
|
398 |
+
|
399 |
+
# Limit to first 20 images for performance
|
400 |
+
if len(gallery_data) >= 20:
|
401 |
+
break
|
402 |
+
|
403 |
+
except Exception as img_error:
|
404 |
+
continue
|
405 |
|
406 |
+
# Update gallery with images
|
407 |
+
if gallery_data:
|
408 |
+
outputs[1] = gr.Gallery(gallery_data, label=f"πΌοΈ Found {len(gallery_data)} Images", height=400, columns=4, rows=2)
|
409 |
+
outputs[2] = f"πΌοΈ Loaded {len(df)} records with {len(gallery_data)} images"
|
410 |
else:
|
411 |
+
outputs[2] = "πΌοΈ Loaded data but no images found to display"
|
412 |
+
|
413 |
+
else:
|
414 |
+
# Regular datasets loading
|
415 |
+
ds = load_dataset(repo_id, split='train', streaming=True)
|
416 |
+
data_list = list(ds.take(1000))
|
417 |
+
df = pd.DataFrame(data_list)
|
418 |
+
outputs[2] = f"π Loaded {len(df)} records via Datasets library"
|
419 |
|
420 |
outputs[2] = "π Searching loaded data..."
|
421 |
yield tuple(outputs)
|
|
|
463 |
|
464 |
# Show available methods for this dataset
|
465 |
available_methods = config['methods']
|
466 |
+
methods_note = f"**Available methods:** {len(available_methods)} tested and working methods"
|
467 |
+
if dataset_key == 'inscene':
|
468 |
+
methods_note += " (πΌοΈ = Image viewer included)"
|
469 |
+
gr.Markdown(methods_note)
|
470 |
|
471 |
with gr.Row():
|
472 |
access_method = gr.Radio(
|
|
|
482 |
fetch_button = gr.Button("π Go Fetch!")
|
483 |
status_output = gr.Markdown("π Ready to search.")
|
484 |
df_output = gr.DataFrame(label="π Results DataFrame", interactive=False, wrap=True)
|
485 |
+
|
486 |
+
# Show gallery for InScene dataset or when using image methods
|
487 |
+
show_gallery = (dataset_key == 'inscene')
|
488 |
+
gallery_output = gr.Gallery(visible=show_gallery, label="πΌοΈ Image Results", height=400, columns=4, rows=2)
|
489 |
|
490 |
with gr.Accordion("π View/Export Full Results", open=False):
|
491 |
markdown_output = gr.Markdown(label="π Markdown View")
|
|
|
516 |
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
|
517 |
)
|
518 |
|
519 |
+
# Show dependency status and dataset-specific methods
|
520 |
def get_dependency_status():
|
521 |
+
status = "### π§ Dataset-Specific Methods (Only Working Methods Shown):\n"
|
522 |
+
for key, config in DATASET_CONFIG.items():
|
523 |
+
methods_str = ", ".join(config['methods'])
|
524 |
+
auth_status = "π Requires Auth" if not config['is_public'] else "β
Public"
|
525 |
+
status += f"- **{config['emoji']} {key.capitalize()}**: {methods_str} ({auth_status})\n"
|
526 |
+
|
527 |
+
status += "\n### π Library Dependencies:\n"
|
528 |
status += f"- **πΌ Pandas**: β
Available\n"
|
529 |
+
status += f"- **π¨ Requests**: β
Available\n"
|
530 |
status += f"- **π€ Datasets**: {'β
Available' if DATASETS_AVAILABLE else 'β Not installed'}\n"
|
531 |
+
|
|
|
|
|
|
|
532 |
return status
|
533 |
|
534 |
with gr.Accordion("π§ Library Status & Quick Start Guide", open=False):
|
535 |
gr.Markdown(get_dependency_status())
|
536 |
gr.Markdown("""
|
537 |
+
### π Quick Start Guide:
|
538 |
+
1. **π€ Prompts**: Try Pandas or API method, search for "translator", "linux", or "writer"
|
539 |
+
2. **βοΈ Caselaw**: Try API method only, search for "contract", "court", or "appeal"
|
540 |
+
3. **π° Finance**: Try Pandas or API method (requires auth), search for "interest" or "market"
|
541 |
+
4. **π©Ί Medical**: Try Pandas method only (requires auth), search for "diagnosis" or "treatment"
|
542 |
+
5. **πΌοΈ InScene**: Try "πΌοΈ Datasets with Images" to see actual images, search for "kitchen" or "outdoor"
|
543 |
|
544 |
### π Authentication:
|
545 |
+
For gated datasets (Finance, Medical, InScene), run: `huggingface-cli login`
|
546 |
|
547 |
+
### π οΈ Method Explanations:
|
548 |
- **π¨ API**: Fast, reliable, works without login (100 rows max)
|
549 |
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
|
550 |
+
- **π€ Datasets**: Standard HuggingFace datasets library
|
551 |
+
- **πΌοΈ Datasets with Images**: Special image viewer for InScene dataset
|
|
|
552 |
|
553 |
+
### β οΈ Note:
|
554 |
+
Only working methods are shown for each dataset. Non-functional methods have been removed.
|
|
|
|
|
|
|
555 |
""")
|
556 |
+
|
557 |
+
if not DATASETS_AVAILABLE:
|
558 |
+
gr.Markdown("**β οΈ Install datasets library for image viewing:** `pip install datasets`")
|
559 |
|
560 |
with gr.Tabs():
|
561 |
for key in DATASET_CONFIG.keys():
|