File size: 12,498 Bytes
c207bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
YourMT3+ with Instrument Conditioning - Google Colab Version

Instructions for use in Google Colab:

1. First, run this cell to install dependencies:
   !pip install torch torchaudio transformers gradio pytorch-lightning

2. Clone the YourMT3 repository:
   !git clone https://github.com/mimbres/YourMT3.git
   %cd YourMT3

3. Copy this code to a cell and run it to launch the interface

4. The Gradio interface will provide a public URL you can access
"""

import sys
import os

# Add the amt/src directory to Python path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'amt/src')))

import subprocess
from typing import Tuple, Dict, Literal
from ctypes import ArgumentError

from html_helper import *
from model_helper import *

import torchaudio
import glob
import gradio as gr
from gradio_log import Log
from pathlib import Path

# Create log file
log_file = 'amt/log.txt'
Path(log_file).touch()

# Model Configuration
model_name = 'YPTF.MoE+Multi (noPS)'  # You can change this
precision = '16'
project = '2024'

print(f"Loading model: {model_name}")

# Get model arguments based on selection
if model_name == "YMT3+":
    checkpoint = "notask_all_cross_v6_xk2_amp0811_gm_ext_plus_nops_b72@model.ckpt"
    args = [checkpoint, '-p', project, '-pr', precision]
elif model_name == "YPTF+Single (noPS)":
    checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt"
    args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec',
            '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF+Multi (PS)":
    checkpoint = "mc13_256_all_cross_v6_xk5_amp0811_edr005_attend_c_full_plus_2psn_nl26_sb_b26r_800k@model.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256',
            '-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf',
            '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (noPS)":
    checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
            '-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
            '-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
            '-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
elif model_name == "YPTF.MoE+Multi (PS)":
    checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt"
    args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5',
            '-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe',
            '-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope',
            '-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision]
else:
    raise ValueError(f"Unknown model: {model_name}")

# Load model
print("Loading model checkpoint...")
try:
    model = load_model_checkpoint(args=args, device="cpu")
    model.to("cuda")
    print("βœ“ Model loaded successfully!")
except Exception as e:
    print(f"βœ— Error loading model: {e}")
    print("Make sure the model checkpoints are available in amt/logs/")

# Helper functions
def prepare_media(source_path_or_url: os.PathLike,
                  source_type: Literal['audio_filepath', 'youtube_url'],
                  delete_video: bool = True,
                  simulate = False) -> Dict:
    """prepare media from source path or youtube, and return audio info"""
    if source_type == 'audio_filepath':
        audio_file = source_path_or_url
    elif source_type == 'youtube_url':
        if os.path.exists('/content/yt_audio.mp3'):  # Colab path
            os.remove('/content/yt_audio.mp3')
        # Download from youtube
        with open(log_file, 'w') as lf:
            audio_file = '/content/yt_audio'  # Colab path
            command = ['yt-dlp', '-x', source_path_or_url, '-f', 'bestaudio',
                '-o', audio_file, '--audio-format', 'mp3', '--restrict-filenames',
                '--extractor-retries', '10', '--force-overwrites']
            if simulate:
                command = command + ['-s']
            process = subprocess.Popen(command,
                stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
        
            for line in iter(process.stdout.readline, ''):
                print(line)
                lf.write(line); lf.flush()
            process.stdout.close()
            process.wait()
        
        audio_file += '.mp3'
    else:
        raise ValueError(source_type)

    # Create info
    info = torchaudio.info(audio_file)
    return {
        "filepath": audio_file,
        "track_name": os.path.basename(audio_file).split('.')[0],
        "sample_rate": int(info.sample_rate),
        "bits_per_sample": int(info.bits_per_sample),
        "num_channels": int(info.num_channels),
        "num_frames": int(info.num_frames),
        "duration": int(info.num_frames / info.sample_rate),
        "encoding": str.lower(info.encoding),
    }

def process_audio(audio_filepath, instrument_hint=None):
    """Process uploaded audio with optional instrument conditioning"""
    if audio_filepath is None:
        return None
    try:
        audio_info = prepare_media(audio_filepath, source_type='audio_filepath')
        midifile = transcribe(model, audio_info, instrument_hint)
        midifile = to_data_url(midifile)
        return create_html_from_midi(midifile)
    except Exception as e:
        return f"<p style='color: red;'>Error processing audio: {str(e)}</p>"

def process_video(youtube_url, instrument_hint=None):
    """Process YouTube video with optional instrument conditioning"""
    if 'youtu' not in youtube_url:
        return None
    try:
        audio_info = prepare_media(youtube_url, source_type='youtube_url')
        midifile = transcribe(model, audio_info, instrument_hint)
        midifile = to_data_url(midifile)
        return create_html_from_midi(midifile)
    except Exception as e:
        return f"<p style='color: red;'>Error processing YouTube video: {str(e)}</p>"

def play_video(youtube_url):
    if 'youtu' not in youtube_url:
        return None
    return create_html_youtube_player(youtube_url)

# Get example files
AUDIO_EXAMPLES = glob.glob('examples/*.*', recursive=True)
YOUTUBE_EXAMPLES = ["https://youtu.be/5vJBhdjvVcE?si=s3NFG_SlVju0Iklg",
                    "https://youtu.be/mw5VIEIvuMI?si=Dp9UFVw00Tl8CXe2",
                    "https://youtu.be/OXXRoa1U6xU?si=dpYMun4LjZHNydSb"]

# Gradio theme
theme = gr.Theme.from_hub("gradio/dracula_revamped")
css = """
.gradio-container {
    background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
    background-size: 400% 400%;
    animation: gradient 15s ease infinite;
}
@keyframes gradient {
    0% {background-position: 0% 50%;}
    50% {background-position: 100% 50%;}
    100% {background-position: 0% 50%;}
}
"""

# Create Gradio interface
with gr.Blocks(theme=theme, css=css) as demo:
    
    gr.Markdown(f"""
    # 🎢 YourMT3+ with Instrument Conditioning
    
    **Enhanced music transcription with instrument-specific control!**
    
    **New Feature**: Select which instrument you want to transcribe from the dropdown menu.
    This solves the problem of the model switching between instruments mid-track.
    
    **Model**: `{model_name}` | **Running in**: Google Colab
    
    ---
    """)

    with gr.Tabs():
        
        with gr.Tab("🎡 Upload Audio"):
            with gr.Row():
                with gr.Column():
                    audio_input = gr.Audio(
                        label="Upload Audio File", 
                        type="filepath",
                        format="wav"
                    )
                    
                    instrument_selector = gr.Dropdown(
                        choices=[
                            "Auto (detect all instruments)", 
                            "Vocals/Singing", 
                            "Guitar", 
                            "Piano", 
                            "Violin", 
                            "Drums", 
                            "Bass", 
                            "Saxophone", 
                            "Flute"
                        ],
                        value="Auto (detect all instruments)",
                        label="🎯 Target Instrument",
                        info="NEW! Choose the specific instrument you want to transcribe"
                    )
                    
                    transcribe_button = gr.Button("🎼 Transcribe", variant="primary", size="lg")
                    
                    if AUDIO_EXAMPLES:
                        gr.Examples(examples=AUDIO_EXAMPLES[:5], inputs=audio_input)
            
            with gr.Row():
                output_audio = gr.HTML(label="Transcription Result")
        
        with gr.Tab("πŸ“Ί YouTube"):
            with gr.Row():
                with gr.Column():
                    youtube_input = gr.Textbox(
                        label="YouTube URL", 
                        placeholder="https://youtu.be/..."
                    )
                    
                    youtube_instrument_selector = gr.Dropdown(
                        choices=[
                            "Auto (detect all instruments)", 
                            "Vocals/Singing", 
                            "Guitar", 
                            "Piano", 
                            "Violin", 
                            "Drums", 
                            "Bass", 
                            "Saxophone", 
                            "Flute"
                        ],
                        value="Auto (detect all instruments)",
                        label="🎯 Target Instrument",
                        info="Choose the specific instrument you want to transcribe"
                    )
                    
                    with gr.Row():
                        play_button = gr.Button("▢️ Preview Video", variant="secondary")
                        transcribe_yt_button = gr.Button("🎼 Transcribe", variant="primary")
                    
                    gr.Examples(examples=YOUTUBE_EXAMPLES, inputs=youtube_input)
            
            with gr.Row():
                with gr.Column():
                    youtube_player = gr.HTML(label="Video Preview")
                with gr.Column():
                    output_youtube = gr.HTML(label="Transcription Result")
    
    # Event handlers
    def process_with_instrument_audio(audio_file, instrument_choice):
        instrument_map = {
            "Auto (detect all instruments)": None,
            "Vocals/Singing": "vocals",
            "Guitar": "guitar", 
            "Piano": "piano",
            "Violin": "violin",
            "Drums": "drums",
            "Bass": "bass",
            "Saxophone": "saxophone",
            "Flute": "flute"
        }
        instrument_hint = instrument_map.get(instrument_choice, None)
        return process_audio(audio_file, instrument_hint)
    
    def process_with_instrument_youtube(url, instrument_choice):
        instrument_map = {
            "Auto (detect all instruments)": None,
            "Vocals/Singing": "vocals",
            "Guitar": "guitar", 
            "Piano": "piano",
            "Violin": "violin",
            "Drums": "drums",
            "Bass": "bass",
            "Saxophone": "saxophone",
            "Flute": "flute"
        }
        instrument_hint = instrument_map.get(instrument_choice, None)
        return process_video(url, instrument_hint)
    
    # Connect events
    transcribe_button.click(
        process_with_instrument_audio, 
        inputs=[audio_input, instrument_selector], 
        outputs=output_audio
    )
    
    transcribe_yt_button.click(
        process_with_instrument_youtube,
        inputs=[youtube_input, youtube_instrument_selector], 
        outputs=output_youtube
    )
    
    play_button.click(play_video, inputs=youtube_input, outputs=youtube_player)

print("πŸš€ Launching YourMT3+ with Instrument Conditioning...")
print("πŸ“ Tips:")
print("   β€’ Try 'Vocals/Singing' for vocal tracks to avoid instrument switching")
print("   β€’ Use 'Guitar' for guitar solos to get complete transcriptions")
print("   β€’ 'Auto' works like the original YourMT3+")

# Launch with share=True for Colab public URL
demo.launch(share=True, debug=True)