Update app.py
Browse files
app.py
CHANGED
@@ -1,124 +1,80 @@
|
|
1 |
-
# Re-build-1
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
import faiss
|
5 |
-
import numpy as np
|
6 |
-
import os
|
7 |
-
from datasets import load_dataset, Dataset
|
8 |
-
from huggingface_hub import HfApi, hf_hub_download
|
9 |
-
from PyPDF2 import PdfReader
|
10 |
from transformers import AutoTokenizer, AutoModel
|
11 |
import torch
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Function to split text into chunks
|
35 |
-
def get_chunks(text, chunk_size=500):
|
36 |
-
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
37 |
-
|
38 |
-
# Function to generate embeddings
|
39 |
-
def generate_embedding(text):
|
40 |
-
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
41 |
-
with torch.no_grad():
|
42 |
-
outputs = bi_model(**inputs)
|
43 |
-
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
44 |
-
return embedding / np.linalg.norm(embedding) # Normalize for FAISS
|
45 |
-
|
46 |
-
# Function to load existing FAISS index from HF
|
47 |
-
def load_existing_faiss_index():
|
48 |
-
try:
|
49 |
-
index_path = hf_hub_download(repo_id=HF_DATASET_NAME, filename=INDEX_FILE, repo_type="dataset")
|
50 |
-
index = faiss.read_index(index_path)
|
51 |
-
print("✅ Loaded existing FAISS index.")
|
52 |
-
return index
|
53 |
-
except:
|
54 |
-
print("⚠️ No existing FAISS index found. Creating a new one.")
|
55 |
-
return faiss.IndexFlatIP(768)
|
56 |
-
|
57 |
-
# Main function to process PDFs & update HF Dataset
|
58 |
-
def process_pdfs_and_store(pdf_files):
|
59 |
-
index = load_existing_faiss_index()
|
60 |
-
|
61 |
-
try:
|
62 |
-
dataset = load_dataset(HF_DATASET_NAME, split="train")
|
63 |
-
existing_chunks = dataset["chunk_text"]
|
64 |
-
existing_embeddings = [np.array(emb) for emb in dataset["embedding"]]
|
65 |
-
existing_files = dataset["source_file"]
|
66 |
-
except:
|
67 |
-
existing_chunks, existing_embeddings, existing_files = [], [], []
|
68 |
-
|
69 |
-
all_chunks, all_embeddings = [], []
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
for pdf_file in pdf_files:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
all_embeddings.extend(embeddings)
|
78 |
-
|
79 |
-
all_embeddings_np = np.array(all_embeddings)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
combined_embeddings = existing_embeddings + list(all_embeddings_np)
|
84 |
-
combined_files = existing_files + [pdf_file.name for pdf_file in pdf_files for _ in range(len(all_chunks))]
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
faiss.write_index(index, INDEX_FILE)
|
93 |
-
hf_api.upload_file(path_or_fileobj=INDEX_FILE, path_in_repo=INDEX_FILE, repo_id=HF_DATASET_NAME, repo_type="dataset")
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
dataset.push_to_hub(HF_DATASET_NAME, split="train")
|
104 |
-
|
105 |
-
return f"✅ Successfully updated FAISS index & embeddings in {HF_DATASET_NAME}. Total Chunks: {len(combined_chunks)}."
|
106 |
-
|
107 |
-
# Gradio UI
|
108 |
-
with gr.Blocks() as demo:
|
109 |
-
gr.Markdown("# 🚀 SCDD Embeddings Generator - Hugging Face Spaces")
|
110 |
-
gr.Markdown("Upload PDFs to generate and store embeddings in a FAISS vector store on Hugging Face.")
|
111 |
-
|
112 |
-
pdf_input = gr.Files(file_types=[".pdf"], label="Upload Reference PDFs (Up to 3)", interactive=True)
|
113 |
-
submit_button = gr.Button("Generate & Store Embeddings")
|
114 |
-
|
115 |
-
output_text = gr.Textbox(label="Status")
|
116 |
-
|
117 |
-
submit_button.click(
|
118 |
-
fn=process_pdfs_and_store,
|
119 |
-
inputs=[pdf_input],
|
120 |
-
outputs=[output_text]
|
121 |
-
)
|
122 |
|
123 |
-
# Launch Gradio App
|
124 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from pinecone import Pinecone, ServerlessSpec, CloudProvider, AwsRegion, VectorType
|
7 |
+
import os
|
8 |
|
9 |
+
# Load NASA-specific bi-encoder model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("nasa-impact/nasa-smd-ibm-st-v2")
|
11 |
+
model = AutoModel.from_pretrained("nasa-impact/nasa-smd-ibm-st-v2")
|
12 |
+
|
13 |
+
# Initialize Pinecone client
|
14 |
+
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
15 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
16 |
+
|
17 |
+
# Create Pinecone index if it doesn't exist
|
18 |
+
index_name = "scdd-index"
|
19 |
+
if index_name not in pc.list_indexes().names():
|
20 |
+
pc.create_index(
|
21 |
+
name=index_name,
|
22 |
+
dimension=768,
|
23 |
+
spec=ServerlessSpec(
|
24 |
+
cloud=CloudProvider.AWS,
|
25 |
+
region=AwsRegion.US_EAST_1
|
26 |
+
),
|
27 |
+
vector_type=VectorType.DENSE,
|
28 |
+
metric="cosine"
|
29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Connect to the Pinecone index
|
32 |
+
index = pc.Index(index_name)
|
33 |
+
|
34 |
+
# Function to encode text using bi-encoder in batches
|
35 |
+
def encode_chunks_batch(chunks, batch_size=8):
|
36 |
+
embeddings = []
|
37 |
+
for i in range(0, len(chunks), batch_size):
|
38 |
+
batch_chunks = chunks[i:i+batch_size]
|
39 |
+
inputs = tokenizer(batch_chunks, return_tensors='pt', padding=True, truncation=True, max_length=128)
|
40 |
+
with torch.no_grad():
|
41 |
+
output = model(**inputs)
|
42 |
+
batch_embeddings = output.last_hidden_state.mean(dim=1)
|
43 |
+
batch_embeddings = batch_embeddings / batch_embeddings.norm(dim=1, keepdim=True)
|
44 |
+
embeddings.extend(batch_embeddings.cpu().numpy())
|
45 |
+
return embeddings
|
46 |
+
|
47 |
+
# Function to process PDFs and upsert embeddings to Pinecone
|
48 |
+
def process_pdfs(pdf_files):
|
49 |
for pdf_file in pdf_files:
|
50 |
+
reader = PdfReader(pdf_file.name)
|
51 |
+
pdf_text = "".join(page.extract_text() for page in reader.pages if page.extract_text())
|
52 |
+
|
53 |
+
# Split text into smaller chunks
|
54 |
+
chunks = [pdf_text[i:i+500] for i in range(0, len(pdf_text), 500)]
|
|
|
|
|
|
|
55 |
|
56 |
+
# Generate embeddings in batches
|
57 |
+
embeddings = encode_chunks_batch(chunks, batch_size=8)
|
|
|
|
|
58 |
|
59 |
+
# Prepare data for Pinecone
|
60 |
+
vectors = [
|
61 |
+
(f"{os.path.basename(pdf_file.name)}-chunk-{idx}", embedding.tolist(), {"text": chunk})
|
62 |
+
for idx, (embedding, chunk) in enumerate(zip(embeddings, chunks))
|
63 |
+
]
|
64 |
|
65 |
+
# Upsert embeddings into Pinecone
|
66 |
+
index.upsert(vectors)
|
67 |
|
68 |
+
return f"Processed {len(pdf_files)} PDF(s) successfully and embeddings stored in Pinecone."
|
|
|
|
|
69 |
|
70 |
+
# Gradio Interface
|
71 |
+
demo = gr.Interface(
|
72 |
+
fn=process_pdfs,
|
73 |
+
inputs=gr.Files(label="Upload PDFs", file_types=[".pdf"]),
|
74 |
+
outputs="text",
|
75 |
+
title="NASA Bi-encoder PDF Embedding & Pinecone Storage",
|
76 |
+
description="Upload PDF files to generate embeddings with NASA Bi-encoder and store in Pinecone."
|
77 |
+
)
|
78 |
|
79 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
|