import gradio as gr from transformers import AutoTokenizer, AutoModel from openai import OpenAI import os import numpy as np from sklearn.metrics.pairwise import cosine_similarity from docx import Document from docx.shared import Pt from docx.enum.text import WD_PARAGRAPH_ALIGNMENT from docx.oxml.ns import nsdecls from docx.oxml import parse_xml import io import tempfile #from astroquery.nasa_ads import ADS import pyvo as vo import pandas as pd from pinecone import Pinecone import logging import re from utils.ads_references import extract_keywords_with_gpt, fetch_nasa_ads_references from langchain_openai import ChatOpenAI from langchain_openai import OpenAIEmbeddings llm = ChatOpenAI(model="gpt-4o") embeddings = OpenAIEmbeddings() from ragas import EvaluationDataset from ragas import evaluate from ragas.llms import LangchainLLMWrapper evaluator_llm = LangchainLLMWrapper(llm) from ragas.metrics import LLMContextRecall, ContextRelevance, Faithfulness, ResponseRelevancy, FactualCorrectness # Load the NASA-specific bi-encoder model and tokenizer bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2" bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name) bi_model = AutoModel.from_pretrained(bi_encoder_model_name) # Set up OpenAI client api_key = os.getenv('OPENAI_API_KEY') client = OpenAI(api_key=api_key) # Set up NASA ADS token #ADS.TOKEN = os.getenv('ADS_API_KEY') # Ensure your ADS API key is stored in environment variables # Pinecone setup pinecone_api_key = os.getenv('PINECONE_API_KEY') pc = Pinecone(api_key=pinecone_api_key) index_name = "scdd-index" index = pc.Index(index_name) # Define system message with instructions system_message = """ You are ExosAI, an advanced assistant specializing in Exoplanet and Astrophysics research. Generate a **detailed and structured** response based on the given **retrieved context and user input**, incorporating key **observables, physical parameters, and technical requirements**. Organize the response into the following sections: 1. **Science Objectives**: Define key scientific objectives related to the science context and user input. 2. **Physical Parameters**: Outline the relevant physical parameters (e.g., mass, temperature, composition). 3. **Observables**: Specify the key observables required to study the science context. 4. **Description of Desired Observations**: Detail the observational techniques, instruments, or approaches necessary to gather relevant data. 5. **Observations Requirements Table**: Generate a table relevant to the Science Objectives, Physical Parameters, Observables and Description of Desired Observations with the following columns and at least 7 rows: - Wavelength Band: Should only be UV, Visible and Infrared). - Instrument: Should only be Imager, Spectrograph, Polarimeter and Coronagraph). - Necessary Values: The necessary values or parameters (wavelength range, spectral resolution where applicable, spatial resolution where applicable, contrast ratio where applicable). - Desired Values: The desired values or parameters (wavelength range, spectral resolution where applicable, spatial resolution where applicable). - Number of Objects Observed: Estimate the number of objects that need to be observed for a statistically meaningful result or for fulfilling the science objective. - Justification: Detailed scientific explanation of why these observations are important for the science objectives. - Comments: Additional notes or remarks regarding each observation. #### **Table Format** | Wavelength Band | Instrument | Necessary Values | Desired Values | Number of Objects Observed | Justification | Comments | |----------------------|------------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------------|----------| #### **Guiding Constraints (Exclusions & Prioritization)** - **Wavelength Band Restriction:** Only include **UV, Visible, and Infrared** bands. - **Instrument Restriction:** Only include **Imager, Spectrograph, Polarimeter, and Coronagraph**. - **Wavelength Limits:** Prioritize wavelengths between **100 nanometers (nm) and 3 micrometers (Ξm)**. - **Allowed Instruments:** **Only include** observations from **direct imaging, spectroscopy, and polarimetry.** **Exclude** transit and radial velocity methods. - **Exclusion of Existing Facilities:** **Do not reference** existing observatories such as JWST, Hubble, or ground-based telescopes. This work pertains to a **new mission**. - **Spectral Resolution Constraint:** Limit spectral resolution (**R**) to the range **10,000 – 50,000**. - **Contrast Ratio:** come up with an appropriate contrast ratio depending on the requirements **. - **Estimate the "Number of Objects Observed" based on the observational strategy, parameters, instruments, statistical requirements, and feasibility.** - **Ensure that all parameters remain scientifically consistent.** - **Include inline references wherever available**. Especially in the Justification column. - **Pay attention to the retrieved context**. **Use this table format as a guideline, generate a detailed table dynamically based on the input.**. Ensure that all values align with the provided constraints and instructions. **Include inline references wherever available**. Especially in the Justification column. Ensure the response is **structured, clear, and observation requirements table follows this format**. **All included parameters must be scientifically consistent with each other.** """ # Function to encode query text def encode_query(text): inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128) outputs = bi_model(**inputs) embedding = outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten() embedding /= np.linalg.norm(embedding) return embedding.tolist() # Context retrieval function using Pinecone def retrieve_relevant_context(user_input, context_text, science_objectives="", top_k=3): query_text = f"Science Goal: {user_input}\nContext: {context_text}\nScience Objectives: {science_objectives}" if science_objectives else f"Science Goal: {user_input}\nContext: {context_text}" query_embedding = encode_query(query_text) # Pinecone query query_response = index.query( vector=query_embedding, top_k=top_k, include_metadata=True ) retrieved_context = "\n\n".join([match['metadata']['text'] for match in query_response.matches]) if not retrieved_context.strip(): return "No relevant context found for the query." return retrieved_context def clean_retrieved_context(raw_context): # Remove unnecessary line breaks within paragraphs cleaned = raw_context.replace("-\n", "").replace("\n", " ") # Remove extra spaces clearly cleaned = re.sub(r'\s+', ' ', cleaned) # Return explicitly cleaned context return cleaned.strip() def fetch_exoplanet_data(): # Connect to NASA Exoplanet Archive TAP Service tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP") # Query to fetch all columns from the pscomppars table ex_query = """ SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag FROM pscomppars """ # Execute the query qresult = tap_service.search(ex_query) # Convert to a Pandas DataFrame ptable = qresult.to_table() exoplanet_data = ptable.to_pandas() return exoplanet_data def generate_response(user_input, science_objectives="", relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0): # Case 1: Both relevant context and science objectives are provided if relevant_context and science_objectives.strip(): combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\nScience Objectives (User Provided): {science_objectives}\n\nPlease generate only the remaining sections as per the defined format." # Case 2: Only relevant context is provided elif relevant_context: combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\n\nPlease generate a full structured response, including Science Objectives." # Case 3: Neither context nor science objectives are provided elif science_objectives.strip(): combined_input = f"User Input: {user_input}\nScience Objectives (User Provided): {science_objectives}\n\nPlease generate only the remaining sections as per the defined format." # Default: No relevant context or science objectives → Generate everything else: combined_input = f"User Input: {user_input}\n\nPlease generate a full structured response, including Science Objectives." response = client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": combined_input} ], max_tokens=max_tokens, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty ) response_only = response.choices[0].message.content.strip() # ADS References appended separately references_text = "" if references: references_text = "\n\nADS References:\n" + "\n".join( [f"- {title} {authors} (Bibcode: {bibcode}) {pub} {pubdate}" for title, abstract, authors, bibcode, pub, pubdate in references]) # Full response (for Gradio display) full_response = response_only + references_text # Return two clearly separated responses return full_response, response_only def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3): """ Generate insights by passing the user's input along with the exoplanet data to GPT-4. """ # Convert the dataframe to a readable format for GPT (e.g., CSV-style text) data_as_text = exoplanet_data.to_csv(index=False) # CSV-style for better readability # Create a prompt with the user query and the data sample insights_prompt = ( f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n" f"User Query: {user_input}\n\n" f"Exoplanet Data:\n{data_as_text}\n\n" f"Please provide insights that are relevant to the user's query." ) # Call GPT-4 to generate insights based on the data and user input response = client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."}, {"role": "user", "content": insights_prompt} ], max_tokens=max_tokens, temperature=temperature ) # Extract and return GPT-4's insights data_insights = response.choices[0].message.content.strip() return data_insights def export_to_word(response_content, subdomain_definition, science_goal, context, max_tokens, temperature, top_p, frequency_penalty, presence_penalty): doc = Document() # Add a title (optional, you can remove this if not needed) doc.add_heading('AI Generated SCDD', 0) # Insert the Subdomain Definition at the top doc.add_heading('Subdomain Definition:', level=1) doc.add_paragraph(subdomain_definition) # Insert the Science Goal at the top doc.add_heading('Science Goal:', level=1) doc.add_paragraph(science_goal) # Insert the User-defined Context doc.add_heading('User-defined Context:', level=1) doc.add_paragraph(context) # Insert Model Parameters doc.add_heading('Model Parameters:', level=1) doc.add_paragraph(f"Max Tokens: {max_tokens}") doc.add_paragraph(f"Temperature: {temperature}") doc.add_paragraph(f"Top-p: {top_p}") doc.add_paragraph(f"Frequency Penalty: {frequency_penalty}") doc.add_paragraph(f"Presence Penalty: {presence_penalty}") # Split the response into sections based on ### headings sections = response_content.split('### ') for section in sections: if section.strip(): # Handle the "Observations Requirements Table" separately with proper formatting if 'Observations Requirements Table' in section: doc.add_heading('Observations Requirements Table', level=1) # Extract table lines table_lines = section.split('\n')[2:] # Start after the heading line # Check if it's an actual table (split lines by '|' symbol) table_data = [line.split('|')[1:-1] for line in table_lines if '|' in line] if table_data: # Add table to the document table = doc.add_table(rows=len(table_data), cols=len(table_data[0])) table.style = 'Table Grid' for i, row in enumerate(table_data): for j, cell_text in enumerate(row): cell = table.cell(i, j) cell.text = cell_text.strip() # Apply text wrapping for each cell cell._element.get_or_add_tcPr().append(parse_xml(r'')) # Process any paragraphs that follow the table paragraph_after_table = '\n'.join([line for line in table_lines if '|' not in line and line.strip()]) if paragraph_after_table: doc.add_paragraph(paragraph_after_table.strip()) # Handle the "ADS References" section elif section.startswith('ADS References'): doc.add_heading('ADS References', level=1) references = section.split('\n')[1:] # Skip the heading for reference in references: if reference.strip(): doc.add_paragraph(reference.strip()) # Add all other sections as plain paragraphs else: doc.add_paragraph(section.strip()) # Save the document to a temporary file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx") doc.save(temp_file.name) return temp_file.name def extract_table_from_response(gpt_response): # Split the response into lines lines = gpt_response.strip().split("\n") # Find where the table starts and ends (based on the presence of pipes `|` and at least 3 columns) table_lines = [line for line in lines if '|' in line and len(line.split('|')) > 3] # If no table is found, return None or an empty string if not table_lines: return None # Find the first and last index of the table lines first_table_index = lines.index(table_lines[0]) last_table_index = lines.index(table_lines[-1]) # Extract only the table part table_text = lines[first_table_index:last_table_index + 1] return table_text def gpt_response_to_dataframe(gpt_response): # Extract the table text from the GPT response table_lines = extract_table_from_response(gpt_response) # If no table found, return an empty DataFrame if table_lines is None or len(table_lines) == 0: return pd.DataFrame() # Find the header and row separator (assume it's a line with dashes like |---|) try: # The separator line (contains dashes separating headers and rows) sep_line_index = next(i for i, line in enumerate(table_lines) if set(line.strip()) == {'|', '-'}) except StopIteration: # If no separator line is found, return an empty DataFrame return pd.DataFrame() # Extract headers (the line before the separator) and rows (lines after the separator) headers = [h.strip() for h in table_lines[sep_line_index - 1].split('|')[1:-1]] # Extract rows (each line after the separator) rows = [ [cell.strip() for cell in row.split('|')[1:-1]] for row in table_lines[sep_line_index + 1:] ] # Create DataFrame df = pd.DataFrame(rows, columns=headers) return df def chatbot(user_input, science_objectives="", context="", subdomain="", max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0): yield "🔄 Connecting with Pinecone...", None, None, None, None, None, None pc_index_name = "scdd-index" yield f"Using Pinecone index: **{index_name}**✅ ", None, None, None, None, None, None yield "🔎 Retrieving relevant context from Pinecone...", None, None, None, None, None, None # Retrieve relevant context using Pinecone relevant_context = retrieve_relevant_context(user_input, context, science_objectives) cleaned_context_list = [clean_retrieved_context(chunk) for chunk in relevant_context] yield "Context Retrieved successfully ✅ ", None, None, None, None, None, None, None keywords = extract_keywords_with_gpt(context, client) ads_query = " ".join(keywords) # Fetch NASA ADS references using the user context references = fetch_nasa_ads_references(ads_query) yield "ADS references retrieved... ✅ ", None, None, None, None, None, None, None yield "🔄 Generating structured response using GPT-4o...", None, None, None, None, None, None # Generate response from GPT-4 full_response, response_only = generate_response( user_input=user_input, science_objectives=science_objectives, relevant_context=relevant_context, references=references, max_tokens=max_tokens, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty ) # RAGAS Evaluation context_ragas = cleaned_context_list response_ragas = response_only query_ragas = user_input + context reference_ragas = "\n\n".join([f"{title}\n{abstract}" for title, abstract, _, _, _, _ in references]) dataset = [] dataset.append( { "user_input":query_ragas, "retrieved_contexts":context_ragas, "response":response_ragas, "reference":reference_ragas } ) evaluation_dataset = EvaluationDataset.from_list(dataset) ragas_evaluation = evaluate(dataset=evaluation_dataset,metrics=[LLMContextRecall(), ContextRelevance(), Faithfulness(), ResponseRelevancy(), FactualCorrectness(coverage="high",atomicity="high")],llm=evaluator_llm, embeddings=embeddings) yield "Response generated successfully ✅ ", None, None, None, None, None, None # Append user-defined science objectives if provided if science_objectives.strip(): full_response = f"### Science Objectives (User-Defined):\n\n{science_objectives}\n\n" + full_response # Export response to Word word_doc_path = export_to_word( full_response, subdomain, user_input, context, max_tokens, temperature, top_p, frequency_penalty, presence_penalty ) yield "Writing SCDD...Performing RAGAS Evaluation...", None, None, None, None, None, None # Fetch exoplanet data and generate insights exoplanet_data = fetch_exoplanet_data() data_insights = generate_data_insights(user_input, exoplanet_data) # Extract GPT-generated table into DataFrame extracted_table_df = gpt_response_to_dataframe(full_response) # Combine response and insights full_response = f"{full_response}\n\nEnd of Response" yield "SCDD produced successfully ✅", None, None, None, None, None, None iframe_html = """""" mapify_button_html = """""" yield full_response, relevant_context, ragas_evaluation, extracted_table_df, word_doc_path, iframe_html, mapify_button_html with gr.Blocks() as demo: gr.Markdown("# **ExosAI - NASA SMD PCRAG SCDD Generator [version-2.1]**") gr.Markdown("## **User Inputs**") user_input = gr.Textbox(lines=5, placeholder="Enter your Science Goal...", label="Science Goal") context = gr.Textbox(lines=10, placeholder="Enter Context Text...", label="Additional Context") subdomain = gr.Textbox(lines=2, placeholder="Define your Subdomain...", label="Subdomain Definition") science_objectives_button = gr.Button("User-defined Science Objectives [Optional]") science_objectives_input = gr.Textbox(lines=5, placeholder="Enter Science Objectives...", label="Science Objectives", visible=False) science_objectives_button.click(lambda: gr.update(visible=True), outputs=[science_objectives_input]) gr.Markdown("### **Model Parameters**") max_tokens = gr.Slider(50, 2000, 150, step=10, label="Max Tokens") temperature = gr.Slider(0.0, 1.0, 0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.0, 1.0, 0.9, step=0.1, label="Top-p") frequency_penalty = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="Frequency Penalty") presence_penalty = gr.Slider(0.0, 1.0, 0.0, step=0.1, label="Presence Penalty") gr.Markdown("## **Model Outputs**") full_response = gr.Textbox(label="ExosAI SCDD Generation...") relevant_context = gr.Textbox(label="Retrieved Context...") ragas_evaluation = gr.Textbox(label="RAGAS Evaluation...") extracted_table_df = gr.Dataframe(label="SC Requirements Table") word_doc_path = gr.File(label="Download SCDD") iframe_html = gr.HTML(label="Miro") mapify_button_html = gr.HTML(label="Generate Mind Map on Mapify") with gr.Row(): submit_button = gr.Button("Generate SCDD") clear_button = gr.Button("Reset") submit_button.click(chatbot, inputs=[user_input, science_objectives_input, context, subdomain, max_tokens, temperature, top_p, frequency_penalty, presence_penalty], outputs=[full_response, relevant_context, ragas_evaluation, extracted_table_df, word_doc_path, iframe_html, mapify_button_html],queue=True) clear_button.click(lambda: ("", "", "", "", 150, 0.7, 0.9, 0.5, 0.0, "", "", None, None, None, None, None), outputs=[user_input, science_objectives_input, context, subdomain, max_tokens, temperature, top_p, frequency_penalty, presence_penalty, full_response, relevant_context, ragas_evaluation, extracted_table_df, word_doc_path, iframe_html, mapify_button_html]) demo.launch(share=True)