import subprocess import sys # Force upgrade gradio subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "gradio>=4.44.0"]) from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification import gradio as gr import numpy as np import scipy.io.wavfile import tempfile import os from transformers import VitsModel, AutoTokenizer import torch import re import traceback print("Starting application...") # Global variables for models punct_pipe = None model = None tokenizer = None def load_models(): global punct_pipe, model, tokenizer print("Loading punctuation model...") try: punctuation_model_id = "oliverguhr/fullstop-punctuation-multilang-large" punct_tokenizer = AutoTokenizer.from_pretrained(punctuation_model_id) punct_model = AutoModelForTokenClassification.from_pretrained(punctuation_model_id) punct_pipe = pipeline("token-classification", model=punct_model, tokenizer=punct_tokenizer, aggregation_strategy="simple") print("✓ Punctuation model loaded successfully") except Exception as e: print(f"✗ Error loading punctuation model: {e}") punct_pipe = None print("Loading TTS model...") try: model = VitsModel.from_pretrained("facebook/mms-tts-kmr-script_latin") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kmr-script_latin") print("✓ TTS model loaded successfully") except Exception as e: print(f"✗ Error loading TTS model: {e}") model = None tokenizer = None # Load models at startup load_models() # Simple number-to-Kurmanji-word mapping num2word = { "0": "sifir", "1": "yek", "2": "du", "3": "sê", "4": "çar", "5": "pênc", "6": "şeş", "7": "heft", "8": "heşt", "9": "neh", "10": "deh" } def replace_numbers_with_words(text): def repl(match): num = match.group() return num2word.get(num, num) return re.sub(r'\b\d+\b', repl, text) def restore_punctuation(text): if punct_pipe is None: print("Punctuation model not available, skipping...") return text try: results = punct_pipe(text) punctuated = "" for token in results: word = token['word'] punct = token.get('entity_group', '') if punct == "PERIOD": punctuated += word + ". " elif punct == "COMMA": punctuated += word + ", " else: punctuated += word + " " return punctuated.strip() except Exception as e: print(f"Punctuation error: {e}") return text def text_to_speech(text): print(f"=== TTS Function Called ===") print(f"Input text: '{text}'") try: # Basic validation if not text or text.strip() == "": error_msg = "Please enter some text" print(f"Error: {error_msg}") return None # Check if models are loaded if model is None or tokenizer is None: error_msg = "TTS model not loaded properly" print(f"Error: {error_msg}") return None print("Processing text...") # Process text processed_text = text.strip() processed_text = replace_numbers_with_words(processed_text) print(f"Processed text: '{processed_text}'") # Tokenize print("Tokenizing...") inputs = tokenizer(processed_text, return_tensors="pt") print(f"Tokenized successfully, input_ids shape: {inputs['input_ids'].shape}") # Generate audio print("Generating audio...") with torch.no_grad(): output = model(**inputs).waveform print(f"Audio generated, shape: {output.shape}") # Convert to numpy waveform = output.squeeze().numpy() print(f"Waveform shape: {waveform.shape}") # Save to file print("Saving audio file...") tmp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) tmp_path = tmp_file.name tmp_file.close() scipy.io.wavfile.write( tmp_path, rate=model.config.sampling_rate, data=waveform ) print(f"✓ Audio saved to: {tmp_path}") print("=== TTS Function Completed Successfully ===") return tmp_path except Exception as e: error_msg = f"Error in TTS: {str(e)}" print(f"✗ {error_msg}") print("Full traceback:") traceback.print_exc() return None print("Creating Gradio interface...") # Interface with Kurdish button texts interface = gr.Interface( fn=text_to_speech, inputs=gr.Textbox( label="Nivîseke bi kurmancî binivîse", # "Write Kurmanji Text" placeholder="Mînak: Silav! Ez baş im." # "Example: Hello! I am fine." ), outputs=gr.Audio(label="Deng"), # "Voice/Sound" title="Bernameya Nivîs-bo-Deng ya bi kurmancî - Kurmanji Text-to-Speech", description="Nivîseke bi kurmancî binivîse ku bo deng bê veguherandin. / Write Kurmanji Kurdish text and listen to it.", submit_btn="Bişîne", # "Send/Submit" clear_btn="Paqij bike", # "Clear" examples=[ ["Silav! Ez baş im."], ["Tu çawa yî?"], ["Ez ji Kurdistanê me."] ] ) print("Launching interface...") if __name__ == "__main__": interface.launch()