"""LangGraph Agent""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client from langchain.tools import Tool load_dotenv() def multiply(a: int, b: int) -> int: return a * b multiply_tool = Tool( name="multiply", func=multiply, description="Multiply two numbers. Args (a: first int, b: second int)" ) def add(a: int, b: int) -> int: return a + b add_tool = Tool( name="add", func=add, description="Add two numbers. Args (a: first int, b: second int)" ) def substract(a: int, b: int) -> int: return a - b substract_tool = Tool( name="substract", func=substract, description="Substract two numbers. Args (a: first int, b: second int)" ) def divide(a: int, b: int) -> int: if b == 0: raise ValueError("Cannot divide by zero.") return a / b divide_tool = Tool( name="divide", func=divide, description="Divide two numbers. Args (a: first int, b: second int)" ) def modulus(a: int, b: int) -> int: return a % b modulus_tool = Tool( name="modulus", func=modulus, description="Modulus two numbers. Args (a: first int, b: second int)" ) def wiki_search(query: str) -> str: search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} wiki_search_tool = Tool( name="wiki_search", func=wiki_search, description="Search Wikipedia for a query and return maximum 2 results. Args (query: the search query)" ) def web_search(query: str) -> str: search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} web_search_tool = Tool( name="web_search", func=web_search, description="Search Tavily for a query and return maximum 3 results. Args (query: the search query)" ) def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} arvix_search_tool = Tool( name="arvix_search", func=arvix_search, description="Search Arxiv for a query and return maximum 3 result. Args (query: the search query)" ) # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) tools = [ multiply_tool, add_tool, substract_tool, divide_tool, modulus_tool, wiki_search_tool, web_search_tool, arvix_search_tool, ] # Build graph function def build_graph(provider: str = "google"): """Build the graph""" # Load environment variables from .env file if provider == "google": # Google Gemini chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": # Groq https://console.groq.com/docs/models chat = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it elif provider == "huggingface": # TODO: Add huggingface endpoint chat = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ), ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM chat_with_tools = chat.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} # def retriever(state: MessagesState): # """Retriever node""" # similar_question = vector_store.similarity_search(state["messages"][0].content) #example_msg = HumanMessage( # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", # ) # return {"messages": [sys_msg] + state["messages"] + [example_msg]} from langchain_core.messages import AIMessage def retriever(state: MessagesState): query = state["messages"][-1].content similar_doc = vector_store.similarity_search(query, k=1)[0] content = similar_doc.page_content if "Final answer :" in content: answer = content.split("Final answer :")[-1].strip() else: answer = content.strip() return {"messages": [AIMessage(content=answer)]} # builder = StateGraph(MessagesState) #builder.add_node("retriever", retriever) #builder.add_node("assistant", assistant) #builder.add_node("tools", ToolNode(tools)) #builder.add_edge(START, "retriever") #builder.add_edge("retriever", "assistant") #builder.add_conditional_edges( # "assistant", # tools_condition, #) #builder.add_edge("tools", "assistant") #builder = StateGraph(MessagesState) #builder.add_node("retriever", retriever) # Retriever ist Start und Endpunkt #builder.set_entry_point("retriever") #builder.set_finish_point("retriever") # Compile graph #return builder.compile() builder = StateGraph(MessagesState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message requires a tool, route to tools # Otherwise, provide a direct response tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile()