|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
|
|
from langchain.tools import Tool |
|
|
|
|
|
load_dotenv() |
|
|
|
def multiply(a: int, b: int) -> int: |
|
return a * b |
|
|
|
multiply_tool = Tool( |
|
name="multiply", |
|
func=multiply, |
|
description="Multiply two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def add(a: int, b: int) -> int: |
|
return a + b |
|
|
|
add_tool = Tool( |
|
name="add", |
|
func=add, |
|
description="Add two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def substract(a: int, b: int) -> int: |
|
return a - b |
|
|
|
substract_tool = Tool( |
|
name="substract", |
|
func=substract, |
|
description="Substract two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def divide(a: int, b: int) -> int: |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
divide_tool = Tool( |
|
name="divide", |
|
func=divide, |
|
description="Divide two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def modulus(a: int, b: int) -> int: |
|
return a % b |
|
|
|
modulus_tool = Tool( |
|
name="modulus", |
|
func=modulus, |
|
description="Modulus two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def wiki_search(query: str) -> str: |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
wiki_search_tool = Tool( |
|
name="wiki_search", |
|
func=wiki_search, |
|
description="Search Wikipedia for a query and return maximum 2 results. Args (query: the search query)" |
|
) |
|
|
|
def web_search(query: str) -> str: |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
web_search_tool = Tool( |
|
name="web_search", |
|
func=web_search, |
|
description="Search Tavily for a query and return maximum 3 results. Args (query: the search query)" |
|
) |
|
|
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
arvix_search_tool = Tool( |
|
name="arvix_search", |
|
func=arvix_search, |
|
description="Search Arxiv for a query and return maximum 3 result. Args (query: the search query)" |
|
) |
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
tools = [ |
|
multiply_tool, |
|
add_tool, |
|
substract_tool, |
|
divide_tool, |
|
modulus_tool, |
|
wiki_search_tool, |
|
web_search_tool, |
|
arvix_search_tool, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "google"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
|
|
chat = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
|
|
chat = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
chat_with_tools = chat.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from langchain_core.messages import AIMessage |
|
|
|
def retriever(state: MessagesState): |
|
query = state["messages"][-1].content |
|
similar_doc = vector_store.similarity_search(query, k=1)[0] |
|
|
|
content = similar_doc.page_content |
|
if "Final answer :" in content: |
|
answer = content.split("Final answer :")[-1].strip() |
|
else: |
|
answer = content.strip() |
|
|
|
return {"messages": [AIMessage(content=answer)]} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
|
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
|
|
|
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |