--- title: Openalex Topic Classification emoji: 🏢 colorFrom: pink colorTo: red sdk: gradio sdk_version: 5.23.1 app_file: app.py pinned: false license: mit short_description: OpenAlex/bert-base-multilingual-cased-finetuned-openalex-top --- # OpenAlex Topic Classification This application allows you to classify academic texts into different topics using machine learning models trained with OpenAlex data. ## Features - Classification of academic texts into multiple topics - Uses two different models for more robust classification - Easy-to-use web interface - Support for structured title and abstract format ## Requirements - Python 3.7+ - Gradio 5.23.1 - Transformers (Hugging Face) ## Installation ```bash pip install -r requirements.txt ``` ## Usage 1. Run the application: ```bash python app.py ``` 2. Open your browser at the address shown in the console (usually http://localhost:7860) 3. Enter your text in the format: ``` Your title here <ABSTRACT> Your abstract here ``` 4. Select the number of classifications you want to see (top_k) 5. Click "Submit" to get the results ## Models The application uses two different models: 1. [OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract](https://huggingface.co/OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract) - Based on BERT multilingual model - Fine-tuned on OpenAlex data - Supports multiple languages 2. [albertmartinez/openalex-topic-classification-title-abstract](https://huggingface.co/albertmartinez/openalex-topic-classification-title-abstract) - Based on BERT multilingual model - Fine-tuned on OpenAlex data (https://huggingface.co/datasets/albertmartinez/openalex-topic-title-abstract) - Supports multiple languages ## License MIT ## References - [OpenAlex](https://openalex.org/) - [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces-config-reference)