|
import gradio as gr |
|
from transformers import pipeline |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_LINKS = { |
|
"OpenAlex": "https://huggingface.co/OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract", |
|
"albertmartinez": "https://huggingface.co/albertmartinez/openalex-topic-classification-title-abstract" |
|
} |
|
|
|
|
|
try: |
|
model = pipeline("text-classification", |
|
model="OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract") |
|
model2 = pipeline("text-classification", |
|
model="albertmartinez/openalex-topic-classification-title-abstract") |
|
logger.info("Models loaded successfully") |
|
except Exception as e: |
|
logger.error(f"Error loading models: {str(e)}") |
|
raise |
|
|
|
def classify_text(text, top_k): |
|
""" |
|
Classify the given text using two different models. |
|
|
|
Args: |
|
text (str): Text to classify in format "<TITLE> {title}\n<ABSTRACT> {abstract}" |
|
top_k (int): Number of classifications to return |
|
|
|
Returns: |
|
tuple: Two dictionaries with classifications from each model |
|
""" |
|
try: |
|
if not text or not isinstance(text, str): |
|
raise ValueError("Input text must be a non-empty string") |
|
|
|
if not isinstance(top_k, int) or top_k < 1: |
|
raise ValueError("top_k must be a positive integer") |
|
|
|
results = [ |
|
{p["label"]: p["score"] for p in model(text, top_k=top_k, truncation=True, max_length=512)}, |
|
{p["label"]: p["score"] for p in model2(text, top_k=top_k, truncation=True, max_length=512)} |
|
] |
|
return results |
|
except Exception as e: |
|
logger.error(f"Classification error: {str(e)}") |
|
raise gr.Error(f"Classification error: {str(e)}") |
|
|
|
|
|
EXAMPLE_TEXT = """<TITLE> Machine Learning Applications in Healthcare |
|
<ABSTRACT> This paper explores the use of machine learning algorithms in healthcare systems for disease prediction and diagnosis.""" |
|
|
|
demo = gr.Interface( |
|
fn=classify_text, |
|
inputs=[ |
|
gr.Textbox( |
|
lines=5, |
|
label="Text", |
|
placeholder="<TITLE> {title}\n<ABSTRACT> {abstract}", |
|
value=EXAMPLE_TEXT |
|
), |
|
gr.Number( |
|
label="Number of classifications (top_k)", |
|
value=10, |
|
precision=0, |
|
minimum=1, |
|
maximum=20 |
|
) |
|
], |
|
outputs=[ |
|
gr.Label(label="Model 1: OpenAlex"), |
|
gr.Label(label="Model 2: albertmartinez") |
|
], |
|
title="OpenAlex Topic Classification", |
|
description=""" |
|
Enter a text with title and abstract to get its topic classification. |
|
|
|
Input format: |
|
``` |
|
<TITLE> Your title here |
|
<ABSTRACT> Your abstract here |
|
``` |
|
|
|
The system uses two different models to provide a more robust classification: |
|
|
|
1. [OpenAlex Model]({openalex_link}): Based on BERT multilingual model, fine-tuned on OpenAlex data |
|
2. [AlbertMartinez Model]({albert_link}): Based on BERT multilingual model, fine-tuned on [OpenAlex data](https://huggingface.co/datasets/albertmartinez/openalex-topic-title-abstract) |
|
|
|
For more information about the models and their performance, visit their Hugging Face pages. |
|
""".format( |
|
openalex_link=MODEL_LINKS["OpenAlex"], |
|
albert_link=MODEL_LINKS["albertmartinez"] |
|
), |
|
examples=[ |
|
[EXAMPLE_TEXT, 5], |
|
["<TITLE> Climate Change Impact\n<ABSTRACT> Study of global warming effects on biodiversity", 3] |
|
], |
|
flagging_mode="never", |
|
api_name="classify" |
|
) |
|
|
|
if __name__ == "__main__": |
|
logger.info(f"Gradio version: {gr.__version__}") |
|
demo.launch() |
|
|