Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import FuyuForCausalLM, AutoTokenizer | |
| from transformers.models.fuyu.processing_fuyu import FuyuProcessor | |
| from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor | |
| from PIL import Image | |
| model_id = "adept/fuyu-8b" | |
| dtype = torch.bfloat16 | |
| device = "cuda" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype) | |
| processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer) | |
| caption_prompt = "Generate a coco-style caption.\\n" | |
| def resize_to_max(image, max_width=1080, max_height=1080): | |
| width, height = image.size | |
| if width <= max_width and height <= max_height: | |
| return image | |
| scale = min(max_width/width, max_height/height) | |
| width = int(width*scale) | |
| height = int(height*scale) | |
| return image.resize((width, height), Image.LANCZOS) | |
| def predict(image, prompt): | |
| # image = image.convert('RGB') | |
| image = resize_to_max(image) | |
| model_inputs = processor(text=prompt, images=[image]) | |
| model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()} | |
| generation_output = model.generate(**model_inputs, max_new_tokens=40) | |
| prompt_len = model_inputs["input_ids"].shape[-1] | |
| return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True) | |
| def caption(image): | |
| return predict(image, caption_prompt) | |
| def set_example_image(example: list) -> dict: | |
| return gr.Image.update(value=example[0]) | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML( | |
| """ | |
| <h1 id="title">Fuyu Multimodal Demo</h1> | |
| <h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3> | |
| For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :) | |
| Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>. | |
| <br> | |
| <br> | |
| <strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong> | |
| <h3>Play with Fuyu-8B in this demo! π¬</h3> | |
| """ | |
| ) | |
| with gr.Tab("Visual Question Answering"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image(label="Upload your Image", type="pil") | |
| text_input = gr.Textbox(label="Ask a Question") | |
| vqa_output = gr.Textbox(label="Output") | |
| vqa_btn = gr.Button("Answer Visual Question") | |
| gr.Examples( | |
| [["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"]], | |
| inputs = [image_input, text_input], | |
| outputs = [vqa_output], | |
| fn=predict, | |
| cache_examples=True, | |
| label='Click on any Examples below to get VQA results quickly π' | |
| ) | |
| with gr.Tab("Image Captioning"): | |
| with gr.Row(): | |
| captioning_input = gr.Image(label="Upload your Image", type="pil") | |
| captioning_output = gr.Textbox(label="Output") | |
| captioning_btn = gr.Button("Generate Caption") | |
| gr.Examples( | |
| [["assets/captioning_example_1.png"], ["assets/captioning_example_2.png"]], | |
| inputs = [captioning_input], | |
| outputs = [captioning_output], | |
| fn=caption, | |
| cache_examples=True, | |
| label='Click on any Examples below to get captioning results quickly π' | |
| ) | |
| captioning_btn.click(fn=caption, inputs=captioning_input, outputs=captioning_output) | |
| vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output) | |
| demo.launch(server_name="0.0.0.0") |