IRIS / services /screen_service.py
a-zamfir's picture
Manual push
031f9b9 verified
import threading
import queue
import time
import base64
import io
import logging
from typing import Callable, Optional, List, Dict
import mss
import numpy as np
from PIL import Image
from openai import OpenAI
from config.settings import Settings
logger = logging.getLogger(__name__)
class ScreenService:
def __init__(
self,
prompt: str,
model: str,
fps: float = 0.5,
queue_size: int = 2,
monitor: int = 1,
max_width: int = 3440,
max_height: int = 1440,
compression_quality: int = 100,
image_format: str = "PNG",
):
"""
:param prompt: Vision model instruction
:param model: Nebius model name
:param fps: Capture frames per second
:param queue_size: Internal buffer size
:param monitor: MSS monitor index
:param max_width/max_height: Max resolution for resizing
:param compression_quality: JPEG quality (1-100)
:param image_format: "JPEG" or "PNG" (PNG is lossless)
"""
self.prompt = prompt
self.model = model
self.fps = fps
self.queue: queue.Queue = queue.Queue(maxsize=queue_size)
self.monitor = monitor
self.max_width = max_width
self.max_height = max_height
self.compression_quality = compression_quality
self.image_format = image_format.upper()
self._stop_event = threading.Event()
self._producer: Optional[threading.Thread] = None
self._consumer: Optional[threading.Thread] = None
# Nebius client
self.client = OpenAI(
base_url=Settings.NEBIUS_BASE_URL,
api_key=Settings.NEBIUS_API_KEY
)
def _process_image(self, img: Image.Image) -> Image.Image:
# Convert to RGB if needed
if img.mode != "RGB":
img = img.convert("RGB")
w, h = img.size
ar = w / h
# Resize maintaining aspect ratio if above max
if w > self.max_width or h > self.max_height:
if ar > 1:
new_w = min(w, self.max_width)
new_h = int(new_w / ar)
else:
new_h = min(h, self.max_height)
new_w = int(new_h * ar)
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
return img
def _image_to_base64(self, img: Image.Image) -> str:
buf = io.BytesIO()
if self.image_format == "PNG":
img.save(buf, format="PNG")
else:
img.save(
buf,
format="JPEG",
quality=self.compression_quality,
optimize=True
)
data = buf.getvalue()
return base64.b64encode(data).decode("utf-8")
def _capture_loop(self):
with mss.mss() as sct:
mon = sct.monitors[self.monitor]
interval = 1.0 / self.fps if self.fps > 0 else 0
while not self._stop_event.is_set():
t0 = time.time()
frame = np.array(sct.grab(mon))
pil = Image.fromarray(frame)
pil = self._process_image(pil)
b64 = self._image_to_base64(pil)
try:
self.queue.put_nowait((t0, b64))
except queue.Full:
self.queue.get_nowait()
self.queue.put_nowait((t0, b64))
if interval:
time.sleep(interval)
def _flatten_conversation_history(self, history: List[Dict[str, str]]) -> str:
"""Flatten conversation history into a readable format for the vision model"""
if not history:
return "No previous conversation."
# Filter out system messages and vision outputs to avoid confusion
filtered_history = []
for msg in history:
role = msg.get('role', '')
content = msg.get('content', '')
# Skip system messages and previous vision outputs
if role == 'system':
continue
if content.startswith('VISION MODEL OUTPUT:'):
continue
if 'screen' in content.lower() and 'sharing' in content.lower():
continue
filtered_history.append(msg)
# Take only the last 10 exchanges to keep context manageable
if len(filtered_history) > 20: # 10 user + 10 assistant messages
filtered_history = filtered_history[-20:]
# Format the conversation
formatted_lines = []
for msg in filtered_history:
role = msg.get('role', 'unknown')
content = msg.get('content', '')
# Truncate very long messages
if len(content) > 200:
content = content[:200] + "..."
if role == 'user':
formatted_lines.append(f"User: {content}")
elif role == 'assistant':
formatted_lines.append(f"Assistant: {content}")
return "\n".join(formatted_lines) if formatted_lines else "No relevant conversation history."
def _inference_loop(
self,
callback: Callable[[Dict, float, str], None],
history_getter: Callable[[], List[Dict[str, str]]]
):
while not self._stop_event.is_set():
try:
t0, frame_b64 = self.queue.get(timeout=1)
except queue.Empty:
continue
# Get and flatten the conversation history
history = history_getter()
flattened_history = self._flatten_conversation_history(history)
# Create the full prompt with system instructions and conversation context
full_prompt = f"{self.prompt}\n\nCONVERSATION CONTEXT:\n{flattened_history}"
for i, msg in enumerate(history):
content_preview = msg.get('content', '')[:100] + "..." if len(msg.get('content', '')) > 100 else msg.get('content', '')
user_message = {
"role": "user",
"content": [
{"type": "text", "text": full_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/{self.image_format.lower()};base64,{frame_b64}"}}
]
}
try:
resp = self.client.chat.completions.create(
model=self.model,
messages=[user_message]
)
latency = time.time() - t0
callback(resp, latency, frame_b64)
except Exception as e:
logger.error(f"Nebius inference error: {e}")
def start(
self,
callback: Callable[[Dict, float, str], None],
history_getter: Callable[[], List[Dict[str, str]]]
) -> None:
if self._producer and self._producer.is_alive():
return
self._stop_event.clear()
self._producer = threading.Thread(target=self._capture_loop, daemon=True)
self._consumer = threading.Thread(
target=self._inference_loop,
args=(callback, history_getter),
daemon=True
)
self._producer.start()
self._consumer.start()
logger.info("ScreenService started.")
def stop(self) -> None:
self._stop_event.set()
if self._producer:
self._producer.join(timeout=1.0)
if self._consumer:
self._consumer.join(timeout=1.0)
logger.info("ScreenService stopped.")