|
import logging
|
|
from typing import Dict, List, Optional
|
|
from dataclasses import dataclass
|
|
from huggingface_hub import InferenceClient
|
|
|
|
from config.settings import Settings
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.DEBUG)
|
|
ch = logging.StreamHandler()
|
|
ch.setLevel(logging.DEBUG)
|
|
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
|
ch.setFormatter(formatter)
|
|
logger.addHandler(ch)
|
|
|
|
@dataclass
|
|
class LLMConfig:
|
|
api_key: str
|
|
model_name: str
|
|
temperature: float = 0.01
|
|
max_tokens: int = 512
|
|
|
|
class LLMService:
|
|
def __init__(
|
|
self,
|
|
api_key: Optional[str] = None,
|
|
model_name: Optional[str] = None,
|
|
):
|
|
"""
|
|
LLMService that uses HuggingFace InferenceClient for chat completions.
|
|
"""
|
|
settings = Settings()
|
|
|
|
|
|
key = api_key or settings.hf_token
|
|
name = model_name or settings.effective_model_name
|
|
|
|
self.config = LLMConfig(
|
|
api_key=key,
|
|
model_name=name,
|
|
temperature=settings.hf_temperature,
|
|
max_tokens=settings.hf_max_new_tokens,
|
|
)
|
|
|
|
|
|
self.client = InferenceClient(token=self.config.api_key)
|
|
|
|
async def get_chat_completion(self, messages: List[Dict[str, str]]) -> str:
|
|
"""
|
|
Return the assistant response for a chat-style messages array.
|
|
"""
|
|
logger.debug(f"Chat completion request with model: {self.config.model_name}")
|
|
|
|
try:
|
|
|
|
response = self.client.chat_completion(
|
|
messages=messages,
|
|
model=self.config.model_name,
|
|
max_tokens=self.config.max_tokens,
|
|
temperature=self.config.temperature
|
|
)
|
|
|
|
|
|
content = response.choices[0].message.content
|
|
logger.debug(f"Chat completion response: {content[:200]}")
|
|
|
|
return content
|
|
|
|
except Exception as e:
|
|
logger.error(f"Chat completion error: {str(e)}")
|
|
raise Exception(f"HF chat completion error: {str(e)}")
|
|
|
|
|