IRIS / services /audio_service.py
a-zamfir's picture
Manual push
031f9b9 verified
import io
import base64
import logging
import tempfile
import asyncio
from typing import Optional, Union
from pathlib import Path
from huggingface_hub import InferenceClient
from config.settings import Settings
# Configure logger for detailed debugging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
ch.setFormatter(formatter)
logger.addHandler(ch)
class AudioService:
def __init__(
self,
api_key: str,
stt_provider: str = "fal-ai",
stt_model: str = "openai/whisper-large-v3",
tts_model: str = "canopylabs/orpheus-3b-0.1-ft",
):
"""
AudioService with separate providers for ASR and TTS.
:param api_key: Hugging Face API token
:param stt_provider: Provider for speech-to-text (e.g., "fal-ai")
:param stt_model: ASR model ID
:param tts_model: TTS model ID
"""
self.api_key = api_key
self.stt_model = stt_model
self.tts_model = tts_model
# Speech-to-Text client
logger.debug(f"Initializing ASR client with provider={stt_provider}")
self.asr_client = InferenceClient(
provider=stt_provider,
api_key=self.api_key,
)
# Text-to-Speech client (no provider needed, use token parameter)
logger.debug(f"Initializing TTS client with default provider")
self.tts_client = InferenceClient(token=self.api_key)
logger.info(f"AudioService configured: ASR model={self.stt_model} via {stt_provider}, TTS model={self.tts_model} via default provider.")
async def speech_to_text(self, audio_file: Union[str, bytes, io.BytesIO]) -> str:
"""
Convert speech to text using the configured ASR provider.
"""
# Prepare input path
if isinstance(audio_file, str):
input_path = audio_file
logger.debug(f"Using existing file for ASR: {input_path}")
else:
data = audio_file.getvalue() if isinstance(audio_file, io.BytesIO) else audio_file
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
tmp.write(data)
tmp.close()
input_path = tmp.name
logger.debug(f"Wrote audio to temp file for ASR: {input_path}")
# Call ASR synchronously in executor
try:
logger.info(f"Calling ASR model={self.stt_model}")
result = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.asr_client.automatic_speech_recognition(
input_path,
model=self.stt_model,
)
)
# Parse result
transcript = result.get("text") if isinstance(result, dict) else getattr(result, "text", "")
logger.info(f"ASR success, transcript length={len(transcript)}")
logger.debug(f"Transcript preview: {transcript[:100]}")
return transcript or ""
except Exception as e:
logger.error(f"ASR error: {e}", exc_info=True)
return ""
async def text_to_speech(self, text: str) -> Optional[bytes]:
"""
Convert text to speech using the configured TTS provider.
"""
if not text.strip():
logger.debug("Empty text input for TTS. Skipping generation.")
return None
def _call_tts():
"""Wrapper function to handle StopIteration properly."""
try:
return self.tts_client.text_to_speech(text, model=self.tts_model)
except StopIteration as e:
# Convert StopIteration to RuntimeError to prevent Future issues
raise RuntimeError(f"StopIteration in TTS call: {e}")
try:
logger.info(f"Calling TTS model={self.tts_model}, text length={len(text)}")
audio = await asyncio.get_event_loop().run_in_executor(None, _call_tts)
logger.info(f"TTS success, received {len(audio)} bytes")
return audio
except Exception as e:
logger.error(f"TTS error: {e}", exc_info=True)
return None