Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,736 Bytes
af58cc7 7653a75 af58cc7 90e8b09 af58cc7 90e8b09 22ea572 af58cc7 0636764 af58cc7 f55d282 481a579 7653a75 18fee24 7653a75 481a579 7653a75 481a579 7653a75 af58cc7 0636764 af58cc7 48973da af58cc7 55e8ee9 af58cc7 e0101eb 7653a75 55e8ee9 af58cc7 90e8b09 0636764 90e8b09 f55d282 90e8b09 55e8ee9 af58cc7 90e8b09 9b91c8a f55d282 90e8b09 55e8ee9 af58cc7 57d9237 af58cc7 b5863bd f55d282 af58cc7 0636764 af58cc7 2dc4e00 22ea572 5f9ec7e 90e8b09 af58cc7 7bdd58e af58cc7 0636764 af58cc7 2e99c9d af58cc7 0636764 af58cc7 22ea572 af58cc7 6ba5eff af58cc7 6ba5eff af58cc7 22ea572 af58cc7 90e8b09 0636764 90e8b09 0636764 90e8b09 0636764 90e8b09 0636764 90e8b09 0636764 90e8b09 0636764 90e8b09 0636764 90e8b09 22ea572 90e8b09 22ea572 f55d282 9b91c8a f55d282 22ea572 f55d282 22ea572 90e8b09 af58cc7 2dc4e00 48973da 2dc4e00 af58cc7 2dc4e00 0636764 22ea572 2dc4e00 0636764 2dc4e00 0636764 2dc4e00 90e8b09 2dc4e00 0636764 2dc4e00 90e8b09 0636764 90e8b09 48973da 90e8b09 0636764 22ea572 90e8b09 0636764 90e8b09 0636764 90e8b09 f55d282 9b91c8a 48973da 903aa61 22ea572 f55d282 9b91c8a f55d282 9b91c8a f55d282 af58cc7 2dc4e00 6ba5eff 90e8b09 2dc4e00 48973da 2dc4e00 af58cc7 2dc4e00 0636764 2dc4e00 48973da 2dc4e00 af58cc7 2dc4e00 af58cc7 2dc4e00 90e8b09 9b91c8a 2dc4e00 9b91c8a 2dc4e00 2270071 90e8b09 f55d282 2dc4e00 af58cc7 0636764 af58cc7 2dc4e00 af58cc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import sys
import time
try:
import spaces
except ImportError:
print("ZeroGPU is not available, skipping...")
import torch
import torchaudio
import gradio as gr
import torchaudio.transforms as T
import polars as pl
from importlib.metadata import version
from gradio.utils import is_zero_gpu_space
from gradio.themes import Base
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
MoonshineForConditionalGeneration,
)
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
use_zero_gpu = is_zero_gpu_space()
use_cuda = torch.cuda.is_available()
if use_zero_gpu:
spaces_version = version("spaces")
print("ZeroGPU is available, changing inference call.")
else:
spaces_version = "N/A"
print("ZeroGPU is not available, skipping...")
print(f"Spaces version: {spaces_version}")
if use_cuda:
print("CUDA is available, setting correct `device` variable.")
device = "cuda"
torch_dtype = torch.bfloat16
else:
device = "cpu"
torch_dtype = torch.bfloat16
# Config
model_name = "Yehor/kulyk-en-uk"
concurrency_limit = 5
current_theme = Base()
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map=device,
torch_dtype=torch_dtype,
trust_remote_code=True,
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load ASR
audio_processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-base")
audio_model = MoonshineForConditionalGeneration.from_pretrained(
"UsefulSensors/moonshine-base", attn_implementation="sdpa"
)
audio_model.to(device)
audio_model.to(torch_dtype)
# Load OCR
ocr_model = ocr_predictor(pretrained=True)
ocr_model.to(device)
# Examples
examples_text = [
"WP: F-16s are unlikely to make a significant difference on the battlefield",
"Missile and 7 of 8 Shaheeds shot down over Ukraine",
"Olympic Games 2024. Schedule of competitions for Ukrainian athletes on 28 July",
"Harris' campaign raised more than $200 million in less than a week",
"Over the week, the NBU sold almost $800 million on the interbank market",
"Paris 2024. Day 2: Text broadcast",
]
examples_audio = [
"example_1.wav",
"example_2.wav",
"example_3.wav",
"example_4.wav",
"example_5.wav",
"example_6.wav",
"example_7.wav",
]
examples_image = [
"example_1.jpg",
"example_2.jpg",
"example_3.jpg",
"example_4.jpg",
"example_5.jpg",
"example_6.jpg",
]
title = "EN-UK Translator"
authors_table = """
## Authors
Follow them on social networks and **contact** if you need any help or have any questions:
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use egorsmkv@gmail.com |
""".strip()
description_head = f"""
# {title}
This space translates your text, audio, image from English to Ukrainian using [kulyk-en-uk](https://huggingface.co/Yehor/kulyk-en-uk) model. Also, check [UK-EN Translator](https://huggingface.co/spaces/Yehor/uk-en-translator) out.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
#### Models
- [kulyk-en-uk](https://huggingface.co/Yehor/kulyk-en-uk)
- [moonshine-base](https://huggingface.co/UsefulSensors/moonshine-base)
- [doctr](https://github.com/mindee/doctr)
""".strip()
tech_libraries = f"""
#### Libraries
- torch: {version("torch")}
- gradio: {version("gradio")}
- transformers: {version("transformers")}
""".strip()
def translate(text: str) -> str:
prompt = "Translate the text to Ukrainian:\n" + text
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
).to(model.device)
output = model.generate(
input_ids,
max_new_tokens=2048,
# Greedy Search
do_sample=False,
repetition_penalty=1.05,
# Sampling
# do_sample=True,
# temperature=0.1,
# # top_k=1,
# min_p=0.9,
# repetition_penalty=1.05,
)
prompt_len = input_ids.shape[1]
generated_tokens = output[:, prompt_len:]
translated_text = tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return translated_text.strip()
@spaces.GPU
def inference_text(text, progress=gr.Progress()):
if not text:
raise gr.Error("Please paste your text.")
progress(0, desc="Translating...")
results = []
sentences = text.split("\n")
non_empty_sentences = []
for sentence in sentences:
s = sentence.strip()
if len(s) != 0:
non_empty_sentences.append(s)
for sentence in progress.tqdm(
non_empty_sentences, desc="Translating...", unit="sentence"
):
t0 = time.time()
translated_text = translate(sentence)
elapsed_time = round(time.time() - t0, 2)
translated_text = translated_text.strip()
results.append(
{
"sentence": sentence,
"translated_text": translated_text,
"elapsed_time": elapsed_time,
}
)
gr.Info("Finished!", duration=2)
return pl.DataFrame(results)
@spaces.GPU
def inference_audio(audio, progress=gr.Progress()):
if not audio:
raise gr.Error("Please paste your audio file.")
progress(0, desc="Translating...")
if isinstance(audio, str):
audio_array, sr = torchaudio.load(audio)
audio_array = audio_array.squeeze()
else:
audio_array, sr = audio
r_sr = audio_processor.feature_extractor.sampling_rate
print("Audio processor SR:", r_sr)
print("Audio file SR:", sr)
if r_sr != sr:
print("Resampling...")
resampler = T.Resample(orig_freq=sr, new_freq=r_sr)
audio_array = resampler(audio_array)
inputs = audio_processor(audio_array, return_tensors="pt", sampling_rate=r_sr)
inputs = inputs.to(device, dtype=torch_dtype)
# to avoid hallucination loops, we limit the maximum length of the generated text based expected number of tokens per second
token_limit_factor = (
6.5 / audio_processor.feature_extractor.sampling_rate
) # Maximum of 6.5 tokens per second
seq_lens = inputs.attention_mask.sum(dim=-1)
max_length = int((seq_lens * token_limit_factor).max().item())
generated_ids = audio_model.generate(**inputs, max_length=max_length)
predictions = audio_processor.batch_decode(generated_ids, skip_special_tokens=True)
print("Predictions:", predictions)
text = predictions[0]
print("Text:", text)
results = []
sentences = text.split("\n")
non_empty_sentences = []
for sentence in sentences:
s = sentence.strip()
if len(s) != 0:
non_empty_sentences.append(s)
for sentence in progress.tqdm(
non_empty_sentences, desc="Translating...", unit="sentence"
):
t0 = time.time()
translated_text = translate(sentence)
elapsed_time = round(time.time() - t0, 2)
results.append(
{
"sentence": sentence,
"translated_text": translated_text,
"elapsed_time": elapsed_time,
}
)
gr.Info("Finished!", duration=2)
return pl.DataFrame(results)
@spaces.GPU
def inference_image(image, progress=gr.Progress()):
if not image:
raise gr.Error("Please paste your image file.")
progress(0, desc="Translating...")
if isinstance(image, str):
doc = DocumentFile.from_images(image)
else:
raise gr.Error("Please paste your image file.")
result = ocr_model(doc)
text = result.render()
print("Text:", text)
results = []
sentences = [text.replace("\n", " ")]
for sentence in progress.tqdm(sentences, desc="Translating...", unit="sentence"):
t0 = time.time()
translated_text = translate(sentence)
elapsed_time = round(time.time() - t0, 2)
results.append(
{
"sentence": sentence,
"translated_text": translated_text,
"elapsed_time": elapsed_time,
}
)
gr.Info("Finished!", duration=2)
return pl.DataFrame(results)
def create_app():
tab = gr.Blocks(
title=title,
analytics_enabled=False,
theme=current_theme,
)
with tab:
gr.Markdown(description_head)
gr.Markdown("## Usage")
translated_text = gr.DataFrame(
label="Translated text",
)
text = gr.Textbox(label="Text", autofocus=True, lines=5)
gr.Button("Translate").click(
inference_text,
concurrency_limit=concurrency_limit,
inputs=text,
outputs=translated_text,
)
with gr.Row():
gr.Examples(label="Choose an example", inputs=text, examples=examples_text)
return tab
def create_audio_app():
with gr.Blocks(theme=current_theme) as tab:
gr.Markdown(description_head)
gr.Markdown("## Usage")
translated_text = gr.DataFrame(
label="Translated text",
)
audio = gr.Audio(label="Audio file", sources="upload", type="filepath")
gr.Button("Translate").click(
inference_audio,
concurrency_limit=concurrency_limit,
inputs=audio,
outputs=translated_text,
)
with gr.Row():
gr.Examples(
label="Choose an example", inputs=audio, examples=examples_audio
)
return tab
def create_image_app():
with gr.Blocks(theme=current_theme) as tab:
gr.Markdown(description_head)
gr.Markdown("## Usage")
translated_text = gr.DataFrame(
label="Translated text",
)
image = gr.Image(label="Image file", sources="upload", type="filepath")
gr.Button("Translate").click(
inference_image,
concurrency_limit=concurrency_limit,
inputs=image,
outputs=translated_text,
)
with gr.Row():
gr.Examples(
label="Choose an example", inputs=image, examples=examples_image
)
return tab
def create_env():
with gr.Blocks(theme=current_theme) as tab:
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
return tab
def create_authors():
with gr.Blocks(theme=current_theme) as tab:
gr.Markdown(authors_table)
return tab
def create_demo():
app_tab = create_app()
app_audio_tab = create_audio_app()
app_image_tab = create_image_app()
authors_tab = create_authors()
env_tab = create_env()
return gr.TabbedInterface(
[app_tab, app_audio_tab, app_image_tab, authors_tab, env_tab],
tab_names=[
"βοΈ Text",
"π Audio",
"π Image",
"π₯ Authors",
"π¦ Environment, Models, and Libraries",
],
)
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch()
|