Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import gc | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import types | |
from contextlib import contextmanager | |
from functools import partial | |
import torch | |
import torch.cuda.amp as amp | |
import torch.distributed as dist | |
import torchvision.transforms.functional as TF | |
from PIL import Image | |
from tqdm import tqdm | |
from .distributed.fsdp import shard_model | |
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward | |
from .distributed.util import get_world_size | |
from .modules.model import WanModel | |
from .modules.t5 import T5EncoderModel | |
from .modules.vae2_2 import Wan2_2_VAE | |
from .utils.fm_solvers import ( | |
FlowDPMSolverMultistepScheduler, | |
get_sampling_sigmas, | |
retrieve_timesteps, | |
) | |
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
from .utils.utils import best_output_size, masks_like | |
class WanTI2V: | |
def __init__( | |
self, | |
config, | |
checkpoint_dir, | |
device_id=0, | |
rank=0, | |
t5_fsdp=False, | |
dit_fsdp=False, | |
use_sp=False, | |
t5_cpu=False, | |
init_on_cpu=True, | |
convert_model_dtype=False, | |
): | |
r""" | |
Initializes the Wan text-to-video generation model components. | |
Args: | |
config (EasyDict): | |
Object containing model parameters initialized from config.py | |
checkpoint_dir (`str`): | |
Path to directory containing model checkpoints | |
device_id (`int`, *optional*, defaults to 0): | |
Id of target GPU device | |
rank (`int`, *optional*, defaults to 0): | |
Process rank for distributed training | |
t5_fsdp (`bool`, *optional*, defaults to False): | |
Enable FSDP sharding for T5 model | |
dit_fsdp (`bool`, *optional*, defaults to False): | |
Enable FSDP sharding for DiT model | |
use_sp (`bool`, *optional*, defaults to False): | |
Enable distribution strategy of sequence parallel. | |
t5_cpu (`bool`, *optional*, defaults to False): | |
Whether to place T5 model on CPU. Only works without t5_fsdp. | |
init_on_cpu (`bool`, *optional*, defaults to True): | |
Enable initializing Transformer Model on CPU. Only works without FSDP or USP. | |
convert_model_dtype (`bool`, *optional*, defaults to False): | |
Convert DiT model parameters dtype to 'config.param_dtype'. | |
Only works without FSDP. | |
""" | |
self.device = torch.device(f"cuda:{device_id}") | |
self.config = config | |
self.rank = rank | |
self.t5_cpu = t5_cpu | |
self.init_on_cpu = init_on_cpu | |
self.num_train_timesteps = config.num_train_timesteps | |
self.param_dtype = config.param_dtype | |
if t5_fsdp or dit_fsdp or use_sp: | |
self.init_on_cpu = False | |
shard_fn = partial(shard_model, device_id=device_id) | |
self.text_encoder = T5EncoderModel( | |
text_len=config.text_len, | |
dtype=config.t5_dtype, | |
device=torch.device('cpu'), | |
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), | |
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
shard_fn=shard_fn if t5_fsdp else None) | |
self.vae_stride = config.vae_stride | |
self.patch_size = config.patch_size | |
self.vae = Wan2_2_VAE( | |
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), | |
device=self.device) | |
logging.info(f"Creating WanModel from {checkpoint_dir}") | |
self.model = WanModel.from_pretrained(checkpoint_dir) | |
self.model = self._configure_model( | |
model=self.model, | |
use_sp=use_sp, | |
dit_fsdp=dit_fsdp, | |
shard_fn=shard_fn, | |
convert_model_dtype=convert_model_dtype) | |
if use_sp: | |
self.sp_size = get_world_size() | |
else: | |
self.sp_size = 1 | |
self.sample_neg_prompt = config.sample_neg_prompt | |
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn, | |
convert_model_dtype): | |
""" | |
Configures a model object. This includes setting evaluation modes, | |
applying distributed parallel strategy, and handling device placement. | |
Args: | |
model (torch.nn.Module): | |
The model instance to configure. | |
use_sp (`bool`): | |
Enable distribution strategy of sequence parallel. | |
dit_fsdp (`bool`): | |
Enable FSDP sharding for DiT model. | |
shard_fn (callable): | |
The function to apply FSDP sharding. | |
convert_model_dtype (`bool`): | |
Convert DiT model parameters dtype to 'config.param_dtype'. | |
Only works without FSDP. | |
Returns: | |
torch.nn.Module: | |
The configured model. | |
""" | |
model.eval().requires_grad_(False) | |
if use_sp: | |
for block in model.blocks: | |
block.self_attn.forward = types.MethodType( | |
sp_attn_forward, block.self_attn) | |
model.forward = types.MethodType(sp_dit_forward, model) | |
if dist.is_initialized(): | |
dist.barrier() | |
if dit_fsdp: | |
model = shard_fn(model) | |
else: | |
if convert_model_dtype: | |
model.to(self.param_dtype) | |
if not self.init_on_cpu: | |
model.to(self.device) | |
return model | |
def generate(self, | |
input_prompt, | |
img=None, | |
size=(1280, 704), | |
max_area=704 * 1280, | |
frame_num=81, | |
shift=5.0, | |
sample_solver='unipc', | |
sampling_steps=50, | |
guide_scale=5.0, | |
n_prompt="", | |
seed=-1, | |
offload_model=True): | |
r""" | |
Generates video frames from text prompt using diffusion process. | |
Args: | |
input_prompt (`str`): | |
Text prompt for content generation | |
img (PIL.Image.Image): | |
Input image tensor. Shape: [3, H, W] | |
size (`tuple[int]`, *optional*, defaults to (1280,704)): | |
Controls video resolution, (width,height). | |
max_area (`int`, *optional*, defaults to 704*1280): | |
Maximum pixel area for latent space calculation. Controls video resolution scaling | |
frame_num (`int`, *optional*, defaults to 81): | |
How many frames to sample from a video. The number should be 4n+1 | |
shift (`float`, *optional*, defaults to 5.0): | |
Noise schedule shift parameter. Affects temporal dynamics | |
sample_solver (`str`, *optional*, defaults to 'unipc'): | |
Solver used to sample the video. | |
sampling_steps (`int`, *optional*, defaults to 50): | |
Number of diffusion sampling steps. Higher values improve quality but slow generation | |
guide_scale (`float`, *optional*, defaults 5.0): | |
Classifier-free guidance scale. Controls prompt adherence vs. creativity. | |
n_prompt (`str`, *optional*, defaults to ""): | |
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
seed (`int`, *optional*, defaults to -1): | |
Random seed for noise generation. If -1, use random seed. | |
offload_model (`bool`, *optional*, defaults to True): | |
If True, offloads models to CPU during generation to save VRAM | |
Returns: | |
torch.Tensor: | |
Generated video frames tensor. Dimensions: (C, N H, W) where: | |
- C: Color channels (3 for RGB) | |
- N: Number of frames (81) | |
- H: Frame height (from size) | |
- W: Frame width from size) | |
""" | |
# i2v | |
if img is not None: | |
return self.i2v( | |
input_prompt=input_prompt, | |
img=img, | |
max_area=max_area, | |
frame_num=frame_num, | |
shift=shift, | |
sample_solver=sample_solver, | |
sampling_steps=sampling_steps, | |
guide_scale=guide_scale, | |
n_prompt=n_prompt, | |
seed=seed, | |
offload_model=offload_model) | |
# t2v | |
return self.t2v( | |
input_prompt=input_prompt, | |
size=size, | |
frame_num=frame_num, | |
shift=shift, | |
sample_solver=sample_solver, | |
sampling_steps=sampling_steps, | |
guide_scale=guide_scale, | |
n_prompt=n_prompt, | |
seed=seed, | |
offload_model=offload_model) | |
def t2v(self, | |
input_prompt, | |
size=(1280, 704), | |
frame_num=121, | |
shift=5.0, | |
sample_solver='unipc', | |
sampling_steps=50, | |
guide_scale=5.0, | |
n_prompt="", | |
seed=-1, | |
offload_model=True): | |
r""" | |
Generates video frames from text prompt using diffusion process. | |
Args: | |
input_prompt (`str`): | |
Text prompt for content generation | |
size (`tuple[int]`, *optional*, defaults to (1280,704)): | |
Controls video resolution, (width,height). | |
frame_num (`int`, *optional*, defaults to 121): | |
How many frames to sample from a video. The number should be 4n+1 | |
shift (`float`, *optional*, defaults to 5.0): | |
Noise schedule shift parameter. Affects temporal dynamics | |
sample_solver (`str`, *optional*, defaults to 'unipc'): | |
Solver used to sample the video. | |
sampling_steps (`int`, *optional*, defaults to 50): | |
Number of diffusion sampling steps. Higher values improve quality but slow generation | |
guide_scale (`float`, *optional*, defaults 5.0): | |
Classifier-free guidance scale. Controls prompt adherence vs. creativity. | |
n_prompt (`str`, *optional*, defaults to ""): | |
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
seed (`int`, *optional*, defaults to -1): | |
Random seed for noise generation. If -1, use random seed. | |
offload_model (`bool`, *optional*, defaults to True): | |
If True, offloads models to CPU during generation to save VRAM | |
Returns: | |
torch.Tensor: | |
Generated video frames tensor. Dimensions: (C, N H, W) where: | |
- C: Color channels (3 for RGB) | |
- N: Number of frames (81) | |
- H: Frame height (from size) | |
- W: Frame width from size) | |
""" | |
# preprocess | |
F = frame_num | |
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1, | |
size[1] // self.vae_stride[1], | |
size[0] // self.vae_stride[2]) | |
seq_len = math.ceil((target_shape[2] * target_shape[3]) / | |
(self.patch_size[1] * self.patch_size[2]) * | |
target_shape[1] / self.sp_size) * self.sp_size | |
if n_prompt == "": | |
n_prompt = self.sample_neg_prompt | |
seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
seed_g = torch.Generator(device=self.device) | |
seed_g.manual_seed(seed) | |
if not self.t5_cpu: | |
self.text_encoder.model.to(self.device) | |
context = self.text_encoder([input_prompt], self.device) | |
context_null = self.text_encoder([n_prompt], self.device) | |
if offload_model: | |
self.text_encoder.model.cpu() | |
else: | |
context = self.text_encoder([input_prompt], torch.device('cpu')) | |
context_null = self.text_encoder([n_prompt], torch.device('cpu')) | |
context = [t.to(self.device) for t in context] | |
context_null = [t.to(self.device) for t in context_null] | |
noise = [ | |
torch.randn( | |
target_shape[0], | |
target_shape[1], | |
target_shape[2], | |
target_shape[3], | |
dtype=torch.float32, | |
device=self.device, | |
generator=seed_g) | |
] | |
def noop_no_sync(): | |
yield | |
no_sync = getattr(self.model, 'no_sync', noop_no_sync) | |
# evaluation mode | |
with ( | |
torch.amp.autocast('cuda', dtype=self.param_dtype), | |
torch.no_grad(), | |
no_sync(), | |
): | |
if sample_solver == 'unipc': | |
sample_scheduler = FlowUniPCMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sample_scheduler.set_timesteps( | |
sampling_steps, device=self.device, shift=shift) | |
timesteps = sample_scheduler.timesteps | |
elif sample_solver == 'dpm++': | |
sample_scheduler = FlowDPMSolverMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
timesteps, _ = retrieve_timesteps( | |
sample_scheduler, | |
device=self.device, | |
sigmas=sampling_sigmas) | |
else: | |
raise NotImplementedError("Unsupported solver.") | |
# sample videos | |
latents = noise | |
mask1, mask2 = masks_like(noise, zero=False) | |
arg_c = {'context': context, 'seq_len': seq_len} | |
arg_null = {'context': context_null, 'seq_len': seq_len} | |
if offload_model or self.init_on_cpu: | |
self.model.to(self.device) | |
torch.cuda.empty_cache() | |
for _, t in enumerate(tqdm(timesteps)): | |
latent_model_input = latents | |
timestep = [t] | |
timestep = torch.stack(timestep) | |
temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten() | |
temp_ts = torch.cat([ | |
temp_ts, | |
temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep | |
]) | |
timestep = temp_ts.unsqueeze(0) | |
noise_pred_cond = self.model( | |
latent_model_input, t=timestep, **arg_c)[0] | |
noise_pred_uncond = self.model( | |
latent_model_input, t=timestep, **arg_null)[0] | |
noise_pred = noise_pred_uncond + guide_scale * ( | |
noise_pred_cond - noise_pred_uncond) | |
temp_x0 = sample_scheduler.step( | |
noise_pred.unsqueeze(0), | |
t, | |
latents[0].unsqueeze(0), | |
return_dict=False, | |
generator=seed_g)[0] | |
latents = [temp_x0.squeeze(0)] | |
x0 = latents | |
if offload_model: | |
self.model.cpu() | |
torch.cuda.synchronize() | |
torch.cuda.empty_cache() | |
if self.rank == 0: | |
videos = self.vae.decode(x0) | |
del noise, latents | |
del sample_scheduler | |
if offload_model: | |
gc.collect() | |
torch.cuda.synchronize() | |
if dist.is_initialized(): | |
dist.barrier() | |
return videos[0] if self.rank == 0 else None | |
def i2v(self, | |
input_prompt, | |
img, | |
max_area=704 * 1280, | |
frame_num=121, | |
shift=5.0, | |
sample_solver='unipc', | |
sampling_steps=40, | |
guide_scale=5.0, | |
n_prompt="", | |
seed=-1, | |
offload_model=True): | |
r""" | |
Generates video frames from input image and text prompt using diffusion process. | |
Args: | |
input_prompt (`str`): | |
Text prompt for content generation. | |
img (PIL.Image.Image): | |
Input image tensor. Shape: [3, H, W] | |
max_area (`int`, *optional*, defaults to 704*1280): | |
Maximum pixel area for latent space calculation. Controls video resolution scaling | |
frame_num (`int`, *optional*, defaults to 121): | |
How many frames to sample from a video. The number should be 4n+1 | |
shift (`float`, *optional*, defaults to 5.0): | |
Noise schedule shift parameter. Affects temporal dynamics | |
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. | |
sample_solver (`str`, *optional*, defaults to 'unipc'): | |
Solver used to sample the video. | |
sampling_steps (`int`, *optional*, defaults to 40): | |
Number of diffusion sampling steps. Higher values improve quality but slow generation | |
guide_scale (`float`, *optional*, defaults 5.0): | |
Classifier-free guidance scale. Controls prompt adherence vs. creativity. | |
n_prompt (`str`, *optional*, defaults to ""): | |
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
seed (`int`, *optional*, defaults to -1): | |
Random seed for noise generation. If -1, use random seed | |
offload_model (`bool`, *optional*, defaults to True): | |
If True, offloads models to CPU during generation to save VRAM | |
Returns: | |
torch.Tensor: | |
Generated video frames tensor. Dimensions: (C, N H, W) where: | |
- C: Color channels (3 for RGB) | |
- N: Number of frames (121) | |
- H: Frame height (from max_area) | |
- W: Frame width (from max_area) | |
""" | |
# preprocess | |
ih, iw = img.height, img.width | |
dh, dw = self.patch_size[1] * self.vae_stride[1], self.patch_size[ | |
2] * self.vae_stride[2] | |
ow, oh = best_output_size(iw, ih, dw, dh, max_area) | |
scale = max(ow / iw, oh / ih) | |
img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS) | |
# center-crop | |
x1 = (img.width - ow) // 2 | |
y1 = (img.height - oh) // 2 | |
img = img.crop((x1, y1, x1 + ow, y1 + oh)) | |
assert img.width == ow and img.height == oh | |
# to tensor | |
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device).unsqueeze(1) | |
F = frame_num | |
seq_len = ((F - 1) // self.vae_stride[0] + 1) * ( | |
oh // self.vae_stride[1]) * (ow // self.vae_stride[2]) // ( | |
self.patch_size[1] * self.patch_size[2]) | |
seq_len = int(math.ceil(seq_len / self.sp_size)) * self.sp_size | |
seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
seed_g = torch.Generator(device=self.device) | |
seed_g.manual_seed(seed) | |
noise = torch.randn( | |
self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1, | |
oh // self.vae_stride[1], | |
ow // self.vae_stride[2], | |
dtype=torch.float32, | |
generator=seed_g, | |
device=self.device) | |
if n_prompt == "": | |
n_prompt = self.sample_neg_prompt | |
# preprocess | |
if not self.t5_cpu: | |
self.text_encoder.model.to(self.device) | |
context = self.text_encoder([input_prompt], self.device) | |
context_null = self.text_encoder([n_prompt], self.device) | |
if offload_model: | |
self.text_encoder.model.cpu() | |
else: | |
context = self.text_encoder([input_prompt], torch.device('cpu')) | |
context_null = self.text_encoder([n_prompt], torch.device('cpu')) | |
context = [t.to(self.device) for t in context] | |
context_null = [t.to(self.device) for t in context_null] | |
z = self.vae.encode([img]) | |
def noop_no_sync(): | |
yield | |
no_sync = getattr(self.model, 'no_sync', noop_no_sync) | |
# evaluation mode | |
with ( | |
torch.amp.autocast('cuda', dtype=self.param_dtype), | |
torch.no_grad(), | |
no_sync(), | |
): | |
if sample_solver == 'unipc': | |
sample_scheduler = FlowUniPCMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sample_scheduler.set_timesteps( | |
sampling_steps, device=self.device, shift=shift) | |
timesteps = sample_scheduler.timesteps | |
elif sample_solver == 'dpm++': | |
sample_scheduler = FlowDPMSolverMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
timesteps, _ = retrieve_timesteps( | |
sample_scheduler, | |
device=self.device, | |
sigmas=sampling_sigmas) | |
else: | |
raise NotImplementedError("Unsupported solver.") | |
# sample videos | |
latent = noise | |
mask1, mask2 = masks_like([noise], zero=True) | |
latent = (1. - mask2[0]) * z[0] + mask2[0] * latent | |
arg_c = { | |
'context': [context[0]], | |
'seq_len': seq_len, | |
} | |
arg_null = { | |
'context': context_null, | |
'seq_len': seq_len, | |
} | |
if offload_model or self.init_on_cpu: | |
self.model.to(self.device) | |
torch.cuda.empty_cache() | |
for _, t in enumerate(tqdm(timesteps)): | |
latent_model_input = [latent.to(self.device)] | |
timestep = [t] | |
timestep = torch.stack(timestep).to(self.device) | |
temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten() | |
temp_ts = torch.cat([ | |
temp_ts, | |
temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep | |
]) | |
timestep = temp_ts.unsqueeze(0) | |
noise_pred_cond = self.model( | |
latent_model_input, t=timestep, **arg_c)[0] | |
if offload_model: | |
torch.cuda.empty_cache() | |
noise_pred_uncond = self.model( | |
latent_model_input, t=timestep, **arg_null)[0] | |
if offload_model: | |
torch.cuda.empty_cache() | |
noise_pred = noise_pred_uncond + guide_scale * ( | |
noise_pred_cond - noise_pred_uncond) | |
temp_x0 = sample_scheduler.step( | |
noise_pred.unsqueeze(0), | |
t, | |
latent.unsqueeze(0), | |
return_dict=False, | |
generator=seed_g)[0] | |
latent = temp_x0.squeeze(0) | |
latent = (1. - mask2[0]) * z[0] + mask2[0] * latent | |
x0 = [latent] | |
del latent_model_input, timestep | |
if offload_model: | |
self.model.cpu() | |
torch.cuda.synchronize() | |
torch.cuda.empty_cache() | |
if self.rank == 0: | |
videos = self.vae.decode(x0) | |
del noise, latent, x0 | |
del sample_scheduler | |
if offload_model: | |
gc.collect() | |
torch.cuda.synchronize() | |
if dist.is_initialized(): | |
dist.barrier() | |
return videos[0] if self.rank == 0 else None | |