Wan-2.2-5B / wan /textimage2video.py
linoyts's picture
linoyts HF Staff
Upload 57 files
ba7cb71 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms.functional as TF
from PIL import Image
from tqdm import tqdm
from .distributed.fsdp import shard_model
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
from .distributed.util import get_world_size
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae2_2 import Wan2_2_VAE
from .utils.fm_solvers import (
FlowDPMSolverMultistepScheduler,
get_sampling_sigmas,
retrieve_timesteps,
)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from .utils.utils import best_output_size, masks_like
class WanTI2V:
def __init__(
self,
config,
checkpoint_dir,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=True,
convert_model_dtype=False,
):
r"""
Initializes the Wan text-to-video generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_sp (`bool`, *optional*, defaults to False):
Enable distribution strategy of sequence parallel.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
convert_model_dtype (`bool`, *optional*, defaults to False):
Convert DiT model parameters dtype to 'config.param_dtype'.
Only works without FSDP.
"""
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.t5_cpu = t5_cpu
self.init_on_cpu = init_on_cpu
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
if t5_fsdp or dit_fsdp or use_sp:
self.init_on_cpu = False
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = Wan2_2_VAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
logging.info(f"Creating WanModel from {checkpoint_dir}")
self.model = WanModel.from_pretrained(checkpoint_dir)
self.model = self._configure_model(
model=self.model,
use_sp=use_sp,
dit_fsdp=dit_fsdp,
shard_fn=shard_fn,
convert_model_dtype=convert_model_dtype)
if use_sp:
self.sp_size = get_world_size()
else:
self.sp_size = 1
self.sample_neg_prompt = config.sample_neg_prompt
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,
convert_model_dtype):
"""
Configures a model object. This includes setting evaluation modes,
applying distributed parallel strategy, and handling device placement.
Args:
model (torch.nn.Module):
The model instance to configure.
use_sp (`bool`):
Enable distribution strategy of sequence parallel.
dit_fsdp (`bool`):
Enable FSDP sharding for DiT model.
shard_fn (callable):
The function to apply FSDP sharding.
convert_model_dtype (`bool`):
Convert DiT model parameters dtype to 'config.param_dtype'.
Only works without FSDP.
Returns:
torch.nn.Module:
The configured model.
"""
model.eval().requires_grad_(False)
if use_sp:
for block in model.blocks:
block.self_attn.forward = types.MethodType(
sp_attn_forward, block.self_attn)
model.forward = types.MethodType(sp_dit_forward, model)
if dist.is_initialized():
dist.barrier()
if dit_fsdp:
model = shard_fn(model)
else:
if convert_model_dtype:
model.to(self.param_dtype)
if not self.init_on_cpu:
model.to(self.device)
return model
def generate(self,
input_prompt,
img=None,
size=(1280, 704),
max_area=704 * 1280,
frame_num=81,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
r"""
Generates video frames from text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation
img (PIL.Image.Image):
Input image tensor. Shape: [3, H, W]
size (`tuple[int]`, *optional*, defaults to (1280,704)):
Controls video resolution, (width,height).
max_area (`int`, *optional*, defaults to 704*1280):
Maximum pixel area for latent space calculation. Controls video resolution scaling
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 50):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed.
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from size)
- W: Frame width from size)
"""
# i2v
if img is not None:
return self.i2v(
input_prompt=input_prompt,
img=img,
max_area=max_area,
frame_num=frame_num,
shift=shift,
sample_solver=sample_solver,
sampling_steps=sampling_steps,
guide_scale=guide_scale,
n_prompt=n_prompt,
seed=seed,
offload_model=offload_model)
# t2v
return self.t2v(
input_prompt=input_prompt,
size=size,
frame_num=frame_num,
shift=shift,
sample_solver=sample_solver,
sampling_steps=sampling_steps,
guide_scale=guide_scale,
n_prompt=n_prompt,
seed=seed,
offload_model=offload_model)
def t2v(self,
input_prompt,
size=(1280, 704),
frame_num=121,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
r"""
Generates video frames from text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation
size (`tuple[int]`, *optional*, defaults to (1280,704)):
Controls video resolution, (width,height).
frame_num (`int`, *optional*, defaults to 121):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 50):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed.
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from size)
- W: Frame width from size)
"""
# preprocess
F = frame_num
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
size[1] // self.vae_stride[1],
size[0] // self.vae_stride[2])
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(self.patch_size[1] * self.patch_size[2]) *
target_shape[1] / self.sp_size) * self.sp_size
if n_prompt == "":
n_prompt = self.sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
noise = [
torch.randn(
target_shape[0],
target_shape[1],
target_shape[2],
target_shape[3],
dtype=torch.float32,
device=self.device,
generator=seed_g)
]
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# evaluation mode
with (
torch.amp.autocast('cuda', dtype=self.param_dtype),
torch.no_grad(),
no_sync(),
):
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise
mask1, mask2 = masks_like(noise, zero=False)
arg_c = {'context': context, 'seq_len': seq_len}
arg_null = {'context': context_null, 'seq_len': seq_len}
if offload_model or self.init_on_cpu:
self.model.to(self.device)
torch.cuda.empty_cache()
for _, t in enumerate(tqdm(timesteps)):
latent_model_input = latents
timestep = [t]
timestep = torch.stack(timestep)
temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten()
temp_ts = torch.cat([
temp_ts,
temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep
])
timestep = temp_ts.unsqueeze(0)
noise_pred_cond = self.model(
latent_model_input, t=timestep, **arg_c)[0]
noise_pred_uncond = self.model(
latent_model_input, t=timestep, **arg_null)[0]
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond)
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latents = [temp_x0.squeeze(0)]
x0 = latents
if offload_model:
self.model.cpu()
torch.cuda.synchronize()
torch.cuda.empty_cache()
if self.rank == 0:
videos = self.vae.decode(x0)
del noise, latents
del sample_scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
return videos[0] if self.rank == 0 else None
def i2v(self,
input_prompt,
img,
max_area=704 * 1280,
frame_num=121,
shift=5.0,
sample_solver='unipc',
sampling_steps=40,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
r"""
Generates video frames from input image and text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation.
img (PIL.Image.Image):
Input image tensor. Shape: [3, H, W]
max_area (`int`, *optional*, defaults to 704*1280):
Maximum pixel area for latent space calculation. Controls video resolution scaling
frame_num (`int`, *optional*, defaults to 121):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity.
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (121)
- H: Frame height (from max_area)
- W: Frame width (from max_area)
"""
# preprocess
ih, iw = img.height, img.width
dh, dw = self.patch_size[1] * self.vae_stride[1], self.patch_size[
2] * self.vae_stride[2]
ow, oh = best_output_size(iw, ih, dw, dh, max_area)
scale = max(ow / iw, oh / ih)
img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS)
# center-crop
x1 = (img.width - ow) // 2
y1 = (img.height - oh) // 2
img = img.crop((x1, y1, x1 + ow, y1 + oh))
assert img.width == ow and img.height == oh
# to tensor
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device).unsqueeze(1)
F = frame_num
seq_len = ((F - 1) // self.vae_stride[0] + 1) * (
oh // self.vae_stride[1]) * (ow // self.vae_stride[2]) // (
self.patch_size[1] * self.patch_size[2])
seq_len = int(math.ceil(seq_len / self.sp_size)) * self.sp_size
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
noise = torch.randn(
self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
oh // self.vae_stride[1],
ow // self.vae_stride[2],
dtype=torch.float32,
generator=seed_g,
device=self.device)
if n_prompt == "":
n_prompt = self.sample_neg_prompt
# preprocess
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
z = self.vae.encode([img])
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# evaluation mode
with (
torch.amp.autocast('cuda', dtype=self.param_dtype),
torch.no_grad(),
no_sync(),
):
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latent = noise
mask1, mask2 = masks_like([noise], zero=True)
latent = (1. - mask2[0]) * z[0] + mask2[0] * latent
arg_c = {
'context': [context[0]],
'seq_len': seq_len,
}
arg_null = {
'context': context_null,
'seq_len': seq_len,
}
if offload_model or self.init_on_cpu:
self.model.to(self.device)
torch.cuda.empty_cache()
for _, t in enumerate(tqdm(timesteps)):
latent_model_input = [latent.to(self.device)]
timestep = [t]
timestep = torch.stack(timestep).to(self.device)
temp_ts = (mask2[0][0][:, ::2, ::2] * timestep).flatten()
temp_ts = torch.cat([
temp_ts,
temp_ts.new_ones(seq_len - temp_ts.size(0)) * timestep
])
timestep = temp_ts.unsqueeze(0)
noise_pred_cond = self.model(
latent_model_input, t=timestep, **arg_c)[0]
if offload_model:
torch.cuda.empty_cache()
noise_pred_uncond = self.model(
latent_model_input, t=timestep, **arg_null)[0]
if offload_model:
torch.cuda.empty_cache()
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond)
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latent.unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latent = temp_x0.squeeze(0)
latent = (1. - mask2[0]) * z[0] + mask2[0] * latent
x0 = [latent]
del latent_model_input, timestep
if offload_model:
self.model.cpu()
torch.cuda.synchronize()
torch.cuda.empty_cache()
if self.rank == 0:
videos = self.vae.decode(x0)
del noise, latent, x0
del sample_scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
return videos[0] if self.rank == 0 else None