Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,691 Bytes
309fd4d b9186cf ba7cb71 46b3f7e ba7cb71 908b63e ba7cb71 0cb5326 8ff4968 0cb5326 8ff4968 0cb5326 8ff4968 ba7cb71 6961549 ba7cb71 8ff4968 3113790 8ff4968 3113790 8ff4968 3113790 8ff4968 3113790 8ff4968 535c73d 8ff4968 3113790 176f1a8 8ff4968 176f1a8 3113790 f5e9ac3 89c4a12 e7f26f5 3113790 89c4a12 ba7cb71 3113790 ba7cb71 8ff4968 ba7cb71 f5e9ac3 6380ec4 f5e9ac3 ba7cb71 535c73d ba7cb71 8ff4968 3113790 8ff4968 ba7cb71 8ff4968 ba7cb71 8ff4968 ba7cb71 908b63e ba7cb71 8b5bd21 ba7cb71 52f499a 86de4f5 c21913a ba7cb71 d6627ef ba7cb71 8ff4968 fc950c9 ba7cb71 8ff4968 ba7cb71 3113790 8ff4968 3113790 8ff4968 3113790 ba7cb71 d6627ef 8ff4968 ba7cb71 8ff4968 ba7cb71 f5e9ac3 ba7cb71 8ff4968 ba7cb71 535c73d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
import gc
# --- 1. Global Setup and Model Loading ---
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Dimension calculation constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 704
DEFAULT_W_SLIDER_VALUE = 1280
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280
# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=False,
convert_model_dtype=True,
)
print("Pipeline initialized and ready.")
# --- Helper Functions (from Wan 2.1 Fast demo) ---
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
"""
Handle image upload and calculate appropriate dimensions for video generation.
Args:
uploaded_pil_image: The uploaded image (PIL Image or numpy array)
current_h_val: Current height slider value
current_w_val: Current width slider value
Returns:
Tuple of gr.update objects for height and width sliders
"""
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
# Convert numpy array to PIL Image if needed
if hasattr(uploaded_pil_image, 'shape'): # numpy array
pil_image = Image.fromarray(uploaded_pil_image).convert("RGB")
else: # already PIL Image
pil_image = uploaded_pil_image
new_h, new_w = _calculate_new_dimensions_wan(
pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(image,
prompt,
height,
width,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress):
"""Calculate dynamic GPU duration based on parameters."""
if duration_seconds >= 3:
return 220
elif sampling_steps > 35 and duration_seconds >= 2:
return 180
elif sampling_steps < 35 or duration_seconds < 2:
return 105
else:
return 90
# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
image,
prompt,
height,
width,
duration_seconds,
sampling_steps=38,
guide_scale=cfg.sample_guide_scale,
shift=cfg.sample_shift,
seed=42,
progress=gr.Progress(track_tqdm=True)
):
"""
Generate a video from text prompt and optional image using the Wan 2.2 TI2V model.
Args:
image: Optional input image (numpy array) for image-to-video generation
prompt: Text prompt describing the desired video
height: Target video height in pixels
width: Target video width in pixels
duration_seconds: Desired video duration in seconds
sampling_steps: Number of denoising steps for video generation
guide_scale: Guidance scale for classifier-free guidance
shift: Sample shift parameter for the model
seed: Random seed for reproducibility (-1 for random)
progress: Gradio progress tracker
Returns:
Path to the generated video file
"""
if seed == -1:
seed = random.randint(0, sys.maxsize)
# Ensure dimensions are multiples of MOD_VALUE
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
input_image = None
if image is not None:
input_image = Image.fromarray(image).convert("RGB")
# Resize image to match target dimensions
input_image = input_image.resize((target_w, target_h))
# Calculate number of frames based on duration
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
# Create size string for the pipeline
size_str = f"{target_h}*{target_w}"
video_tensor = pipeline.generate(
input_prompt=prompt,
img=input_image, # Pass None for T2V, Image for I2V
size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
shift=shift,
sample_solver='unipc',
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
seed=seed,
offload_model=True
)
# Save the video to a temporary file
video_path = cache_video(
tensor=video_tensor[None], # Add a batch dimension
save_file=None, # cache_video will create a temp file
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1)
)
del video_tensor
gc.collect()
return video_path
# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1100px !important; margin: 0 auto} #output_video {height: 500px;} #input_image {height: 500px;}"
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
gr.Markdown("# Wan 2.2 TI2V 5B")
gr.Markdown("generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model**,[[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B),[[paper]](https://arxiv.org/abs/2503.20314)")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="numpy", label="Optional (blank = text-to-image)", elem_id="input_image")
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video", elem_id="output_video")
run_button = gr.Button("Generate Video", variant="primary")
# Add image upload handler
image_input.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[image_input, height_input, width_input],
outputs=[height_input, width_input]
)
image_input.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[image_input, height_input, width_input],
outputs=[height_input, width_input]
)
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
gr.Examples(
examples=[
[example_image_path, "The cat removes the glasses from its eyes.", 1088, 800, 1.5],
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
[None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
],
inputs=[image_input, prompt_input, height_input, width_input, duration_input],
outputs=video_output,
fn=generate_video,
cache_examples="lazy",
)
run_button.click(
fn=generate_video,
inputs=[image_input, prompt_input, height_input, width_input, duration_input, steps_input, scale_input, shift_input, seed_input],
outputs=video_output
)
if __name__ == "__main__":
demo.launch(mcp_server=True) |