File size: 9,398 Bytes
a04f574
 
 
9e45db3
a04f574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e45db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a04f574
 
9e45db3
 
 
a04f574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e45db3
a04f574
 
 
 
 
 
 
 
 
 
 
 
9e45db3
a04f574
 
 
 
 
 
 
 
 
 
 
 
 
9e45db3
a04f574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e45db3
a04f574
 
 
 
 
 
 
 
 
 
 
9e45db3
 
 
a04f574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e45db3
a04f574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e45db3
a04f574
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import json
import stanza
import re

nlp = stanza.Pipeline(
    lang="en",
    processors="tokenize,pos,lemma",
    tokenize_pretokenized=False,
)

_EXPECTED_SUFFIXES = {
    "Plural":              {"s", "es"},
    "Possessive":          {"'s", "s"},
    "Comparative":         {"er"},
    "Superlative":         {"est"},
    "3rd Person Singular": {"s", "es"},
    "Past Tense":          {"ed"},
    "Past Participle":     {"ed", "en", "n"},
    "Progressive":         {"ing"},
    "Gerund":              {"ing"},
}

_CONTRACTION_PARTICLES = {
    "'ll": "will",          # we'll, he'll
    "'d":  "would/had",     # I'd, she'd
    "'ve": "have",          # we've, they've
    "'re": "are",           # you're, they're
    "'m":  "am",            # I'm
    "n't": "not",           # isn't, didn't
    "'s":  "is/has",        # what's, she's
}

_S_TOKENS = {"'s", "’s"}


def is_possessive_candidate(tok):
    return tok.text in _S_TOKENS and tok.upos == "PART"


def lcp(a: str, b: str) -> str:
    i = 0
    while i < min(len(a), len(b)) and a[i].lower() == b[i].lower():
        i += 1
    return a[:i]


def strip_doubling(lemma: str, suf: str) -> str:
    if suf and len(suf) >= 2 and suf[0] == lemma[-1]:
        cand = suf[1:]
        if any(cand in v for v in _EXPECTED_SUFFIXES.values()):
            return cand
    return suf


def get_suffix(lemma: str, surface: str) -> str:
    return strip_doubling(lemma, surface[len(lcp(lemma, surface)):])


def normalize_suffix(lemma: str, raw_suf: str, expected_set: set) -> str | None:
    if raw_suf in expected_set:
        return raw_suf
    if lemma.lower().endswith("y") and raw_suf.startswith("i"):
        alt = raw_suf[1:]
        if alt in expected_set:
            return alt
    return None


def preprocess_text(text: str) -> tuple[str, list[int]]:

    original_words = text.split()
    
    position_map = []  # position_map[original_index] = cleaned_index
    cleaned_words = []
    
    for i, word in enumerate(original_words):
        if re.match(r'\[.*\]', word):
            position_map.append(-1)
        else:
            position_map.append(len(cleaned_words))
            cleaned_words.append(word)
    
    cleaned_text = ' '.join(cleaned_words)
    return cleaned_text, position_map


def calculate_adjusted_index(cleaned_index: int, position_map: list[int]) -> int:

    for original_index, cleaned_pos in enumerate(position_map):
        if cleaned_pos == cleaned_index:
            return original_index
    

    return cleaned_index


def extract_inflectional_morphemes(text: str):

    cleaned_text, position_map = preprocess_text(text)
    
    doc = nlp(cleaned_text)
    results = []

    for sent in doc.sentences:
        words = sent.words
        i = 0
        while i < len(words):
            w = words[i]
            surf, lem, pos = w.text, w.lemma, w.upos
            feats = {k: v for k, v in (f.split("=", 1) for f in (w.feats or "").split("|") if "=" in f)}
            low_txt = surf.lower()

            if is_possessive_candidate(w) and i > 0:
                prev = words[i - 1]
                results.append({
                    "word": prev.text + surf,
                    "lemma": prev.lemma,
                    "index": calculate_adjusted_index(i - 1, position_map),
                    "inflectional_morpheme": "Possessive"
                    if prev.upos in {"NOUN", "PROPN"} else "Contraction",
                    "morpheme_form": "'/s",
                })
                i += 1
                continue

            if low_txt in _CONTRACTION_PARTICLES and i > 0:
                prev = words[i - 1]
                results.append({
                    "word": prev.text + surf,
                    "lemma": prev.lemma,
                    "index": calculate_adjusted_index(i - 1, position_map),
                    "inflectional_morpheme": "Contraction",
                    "morpheme_form": low_txt,
                })
                i += 1
                continue

            if feats.get("Poss") == "Yes" and pos in {"PRON", "DET"}:
                low_lem, low_surf = lem.lower(), surf.lower()
                suf = get_suffix(low_lem, low_surf)
                morpheme_form = "/s" if suf in {"s", "es"} and low_lem + suf == low_surf else "<IRR>"
                results.append({
                    "word": surf,
                    "lemma": lem,
                    "index": calculate_adjusted_index(i, position_map),
                    "inflectional_morpheme": "Possessive",
                    "morpheme_form": morpheme_form,
                })
                i += 1
                continue

            inflect_type = None
            if pos == "NOUN" and feats.get("Number") == "Plur":
                inflect_type = "Plural"
            elif pos == "ADJ" and feats.get("Degree") == "Cmp":
                inflect_type = "Comparative"
            elif pos == "ADJ" and feats.get("Degree") == "Sup":
                inflect_type = "Superlative"
            elif pos == "VERB" and feats.get("VerbForm") == "Fin" and feats.get("Tense") == "Pres" and feats.get("Person") == "3":
                inflect_type = "3rd Person Singular"
            elif pos == "VERB" and feats.get("VerbForm") == "Fin" and feats.get("Tense") == "Past":
                inflect_type = "Past Tense"
            elif pos == "VERB" and feats.get("VerbForm") == "Part":
                if feats.get("Tense") == "Past" or w.xpos == "VBN":
                    inflect_type = "Past Participle"
                elif feats.get("Tense") == "Pres" or w.xpos == "VBG":
                    inflect_type = "Progressive"

            if inflect_type:
                if surf.lower() == lem.lower() and inflect_type not in {"Possessive", "Comparative", "Superlative"}:
                    i += 1
                    continue

                raw_suffix = get_suffix(lem, low_txt)
                canon = normalize_suffix(lem, raw_suffix, _EXPECTED_SUFFIXES[inflect_type])
                morpheme_form = f"/{canon}" if canon else "<IRR>"
                results.append({
                    "word": surf,
                    "lemma": lem,
                    "index": calculate_adjusted_index(i, position_map),
                    "inflectional_morpheme": inflect_type,
                    "morpheme_form": morpheme_form,
                })

            i += 1

    return results


def extract_morpheme_omissions(text: str):

    cleaned_text, position_map = preprocess_text(text)
    
    doc = nlp(cleaned_text)
    omissions = []

    for sent in doc.sentences:
        words = sent.words
        i = 0
        while i < len(words):
            w = words[i]
            surf, lem, pos = w.text, w.lemma, w.upos
            feats = {k: v for k, v in (f.split("=", 1) for f in (w.feats or "").split("|") if "=" in f)}

            inflect_type = None
            if pos == "NOUN" and feats.get("Number") == "Plur":
                inflect_type = "Plural"
            elif pos == "ADJ" and feats.get("Degree") == "Cmp":
                inflect_type = "Comparative"
            elif pos == "ADJ" and feats.get("Degree") == "Sup":
                inflect_type = "Superlative"
            elif pos == "VERB" and feats.get("VerbForm") == "Fin" and feats.get("Tense") == "Pres" and feats.get("Person") == "3":
                inflect_type = "3rd Person Singular"
            elif pos == "VERB" and feats.get("VerbForm") == "Fin" and feats.get("Tense") == "Past":
                inflect_type = "Past Tense"
            elif pos == "VERB" and feats.get("VerbForm") == "Part":
                if feats.get("Tense") == "Past" or w.xpos == "VBN":
                    inflect_type = "Past Participle"
                elif feats.get("Tense") == "Pres" or w.xpos == "VBG":
                    inflect_type = "Progressive"

            if inflect_type and surf.lower() == lem.lower() and inflect_type not in {"Possessive", "Comparative", "Superlative"}:
                omissions.append({
                    "word": surf,
                    "lemma": lem,
                    "index": calculate_adjusted_index(i, position_map),
                    "inflectional_morpheme": inflect_type,
                    "morpheme_form": "<OMI>", 
                })

            i += 1

    return omissions


def annotate_morpheme_omission(session_id, base_dir="session_data"):

    base_dir = base_dir or os.getcwd()
    json_file = os.path.join(base_dir, f"{session_id}/{session_id}_transcriptionCW.json")

    if not os.path.exists(json_file):
        raise FileNotFoundError(f"{json_file} not found, make sure transcription step ran first.")

    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    segments = data.get("segments", data) if isinstance(data, dict) else data

    for seg in segments:
        text = seg.get("text", "")
        seg["morpheme_omissions"] = extract_morpheme_omissions(text)

    with open(json_file, "w", encoding="utf-8") as f:
        json.dump(data, f, ensure_ascii=False, indent=2)


if __name__ == "__main__":
    sample = "And he [UM] [UM] the rabbit [UM] [UH] [UH] make [UH] sand castle."
    print("Inflectional Morphemes:")
    print(json.dumps(extract_inflectional_morphemes(sample), indent=2, ensure_ascii=False))
    print("\nMorpheme Omissions:")
    print(json.dumps(extract_morpheme_omissions(sample), indent=2, ensure_ascii=False))