File size: 18,832 Bytes
b89907e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import tensorflow as tf
import time as tm
import sys
# import numpy as np
# import cudnn as cd
# from tensorflow.keras import datasets, layers, models
# import matplotlib.pyplot as plt
# from tensorflow.python.client import device_lib

class Integrator_layer(tf.keras.layers.Layer):
    def __init__(self, n_steps=100, integration_window=100, time_constant=1.0, leakyness=0.0,
                 V_m_threshold = 1.0, refractory_period=0, amplitude=1.0, V_m_min=0, V_cm=2.5, device='cuda', name='I&F'):
        super(Integrator_layer, self).__init__(name=name)
        # self.threshold = nn.Threshold(V_m_threshold, 0)
        # self.zero = torch.tensor(0, dtype=torch.float, device=device)
        self.Vm_threshold = V_m_threshold
        self.integration_window = integration_window
        self.refractory_period = refractory_period
        self.time_constant = time_constant
        # self.epsilon = 0.001
        self.epsilon = tf.keras.backend.epsilon
        self.amplitude = amplitude
        # self.threshold = nn.Threshold(V_m_threshold - self.epsilon, 0) ### Thresholding function
        # self.threshold = tf.nn.relu(V_m_threshold - self.epsilon, 0)  ### Thresholding function
        self.V_m_min = V_m_min
        self.device = device

    @tf.function
    def chunk_sizes(self, length, chunk_size):
        chunks = [chunk_size for x in range(length//chunk_size)]
        if length % chunk_size != 0:
            chunks.append(length % chunk_size)
        return chunks

    def build(self, input_shape):
        self.batch_size = input_shape[0]
        self.timesteps = input_shape[1]
        self.image_shape = input_shape[2:]
        self.image_rank = len(input_shape)

        # self.chunk_sizes = self.chunk_sizes(self.timesteps, self.integration_window)
        self.chunk_sizes = self.chunk_sizes(input_shape[1], self.integration_window)
        self.tensor_invariance = [None for i in range(self.image_rank)]
        # self.list_of_indices = [[x, 0] for x in tf.range(input_shape[0])]
        # self.list_of_indices = tf.range(input_shape[0])

    @tf.function
    def call(self, inputs):
        ### List of indices - list of indices to replace very first timestep with zero after the roll operation
        # list_of_indices = tf.pad(tf.expand_dims(tf.range(tf.shape(inputs)[0]), axis=1),
        #                          paddings=[[0, 0], [0, 1]],
        #                          mode="CONSTANT")
        list_of_indices = tf.pad(tf.expand_dims(tf.range(tf.shape(inputs)[0]), axis=1),
                                 paddings=[[0, 0], [0, 1]],
                                 mode="CONSTANT")
        roll_padding = tf.zeros([self.image_rank, 2], dtype=tf.int32)
        roll_padding = tf.tensor_scatter_nd_update(roll_padding, indices=[[1, 0]], updates= [1])
        images_chunks = tf.split(inputs, self.chunk_sizes, axis=1) ### Fragment current sample into multiple chunks with length equal to the integration window
        first_chunk = True
        # zero = torch.tensor(0, dtype=torch.float, device=self.device)
        for chunk, n_timesteps in zip(images_chunks, self.chunk_sizes):
            ### n_timesteps - the number of timesteps for current chunk of integration window
            Spikes_out = tf.zeros([tf.shape(chunk)[0], *self.image_shape, n_timesteps + 1])
            ### V_m_out - array for storing membrane potential
            V_m_out = tf.zeros_like(chunk)
            # V_m_temp = tf.zeros_like(chunk)
            V_m_temp = tf.ones_like(chunk)
            # V_m_temp = tf.tensor_scatter_nd_update(V_m_temp, indices=list_of_indices,
            #                                        updates=tf.ones([1, *self.image_shape]))
            while tf.math.count_nonzero(V_m_temp) != 0:
                tf.autograph.experimental.set_loop_options(shape_invariants=[(V_m_temp, tf.TensorShape(self.tensor_invariance))])
                ### V_m_chunk - cumulative summation (integration) along time dimension
                V_m_chunk = tf.math.cumsum(tf.math.multiply(chunk, self.time_constant), axis=1)
                ### Thresholding chunks, all values bellow threshold value are zeroed
                V_m_temp = tf.nn.relu(V_m_chunk - self.Vm_threshold)
                # V_m_temp = tf.print(V_m_temp, [V_m_temp], 'breaking')
                if tf.math.count_nonzero(V_m_temp) == 0: ### if Vm did not cross threshold, break the cycle
                    # V_m_out = V_m_out + V_m_chunk
                    # V_m_out = tf.print(V_m_out, [V_m_out], 'breaking')
                    break
                ### Cumsum of the thresholded cumsum - to avoid any future threshold crossings (additional zeroes) that can occur after threshold is hit:
                V_m_temp = tf.math.cumsum(V_m_temp, axis=1)
                ### V_m_temp == 0 The amount of zero values before function crosses the threshold. Used to calculated how many timesteps it took for an integrator to fire an output spike
                Spikes_out = Spikes_out + tf.one_hot(tf.reduce_sum(tf.cast((V_m_temp == 0), tf.int32), axis=1), depth=n_timesteps + 1)### One hotted zero counts
                ### TF roll operation is used to shift the vector values by 1, other timestep which crossed threshold is not included:
                V_m_temp = tf.pad(V_m_temp, paddings=roll_padding, mode="CONSTANT")
                V_m_temp, _ = tf.split(V_m_temp, [n_timesteps, 1], axis=1)
                # V_m_temp = tf.roll(V_m_temp, shift=1, axis=1)
                ###Since roll operation will shift the last value to the first place, the first value should be 0'ed for a proper counting of 0 in the next code fragments.
                # __, V_m_temp = tf.split(V_m_temp, [1, n_timesteps - 1], axis=1)
                # V_m_temp = tf.concat((V_m_temp, tf.zeros_like(__)), axis=1)
                # V_m_temp = tf.tensor_scatter_nd_update(V_m_temp, indices=list_of_indices,
                #                                        updates=tf.zeros([tf.shape(chunk)[0], *self.image_shape]))
                # V_m_out = tf.where(V_m_temp == 0, V_m_out + V_m_chunk, 0) ### Resets V_m to 0 after firing
                if self.refractory_period!=0: ### Resets (=0) number of timesteps after output spike is fired
                    V_m_temp = tf.roll(chunk, shift=self.refractory_period, axis=1)
                    V_m_temp[:, 0:(self.refractory_period-1), :, :, :] = 0
                chunk = tf.where(V_m_temp == 0.0, 0.0, chunk) ### Removes spikes before firing. So new V_m can be calculated for a next spike.
            # Spikes_out = torch.narrow(Spikes_out, dim=-1, start=0, length= n_timesteps)
            Spikes_out, _ = tf.split(Spikes_out, [n_timesteps, 1], axis=-1) ### Onehot operation adds back time dimension to the last place, so it must be popped out
            if first_chunk:
                # V_m_final = V_m_out
                Spikes_out_final = Spikes_out
                first_chunk = False
            else:
                V_m_final = tf.concat((V_m_final, V_m_out), axis=1)
                Spikes_out_final = tf.concat((Spikes_out_final, Spikes_out), axis=-1)

        ### Onehotting puts time as the last tensor dimension. 'movedim' moves time dimension to the 2nd place, after the batch number, as it was before.
        Spikes_out_final = tf.experimental.numpy.moveaxis(Spikes_out_final, source=-1, destination=1)
        # return V_m_final, Spikes_out_final
        # print('LIF forward end:')
        # print(f'{datetime.now().time().replace(microsecond=0)} --- ')
        # print(Spikes_out.type())
        if self.amplitude !=1.0:
            Spikes_out_final = Spikes_out_final*self.amplitude
        return Spikes_out_final

def sparse_data_generator_non_spiking(input_images, input_labels, batch_size=32, nb_steps=100, shuffle=True, flatten= False):
    """ This generator takes datasets in analog format and generates network input as constant currents.
        If repeat=True, encoding is rate-based, otherwise it is a latency encoding
    Args:
        X: The data ( sample x event x 2 ) the last dim holds (time,neuron) tuples
        y: The labels
    """
    # data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=n_workers)
    data_loader_original = tf.data.Dataset.from_tensor_slices((tf.cast(input_images, tf.float32), input_labels))
    if shuffle:
        data_loader_original = data_loader_original.shuffle(buffer_size=100)
    data_loader = data_loader_original.batch(batch_size=batch_size, drop_remainder=False)

    number_of_batches = input_labels.__len__() // batch_size
    counter = 0
    time = tm.time()

    for X, y in data_loader:
        if flatten:
            X = X.reshape(X.shape[0], -1)
        # sample_dims = np.array(X.shape[1:], dtype=int)
        sample_dims = X.shape[1:]
        # X = torch.unsqueeze(X, dim=1)
        X = tf.expand_dims(X, axis=1)
        X = tf.repeat(X, repeats=nb_steps, axis=1)
        time_taken = tm.time() - time
        time = tm.time()
        ETA = time_taken * (number_of_batches - counter)
        sys.stdout.write(
            "\rBatch: {0}/{1}, Progress: {2:0.2f}%, Time to process last batch: {3:0.2f} seconds, Estimated time to finish epoch: {4:0.2f} seconds | {5}:{6} minutes".format(
                counter, number_of_batches, (counter / number_of_batches) * 100, time_taken, ETA, int(ETA // 60),
                int(ETA % 60)))
        sys.stdout.flush()
        # X_batch = torch.tensor(X, device=device, dtype=torch.float)
        # yield X.expand(-1, nb_steps, *sample_dims).to(device), y.to(device)  ### Returns this values after each batch
        counter += 1
        yield X, y  ### Returns this values after each batch

# return argument_free_generator()

class Reduce_sum(tf.keras.layers.Layer):
    def __init__(self, name=None):
        super(Reduce_sum, self).__init__(name=name)


    def call(self, inputs):
        return tf.math.reduce_sum(inputs, axis=1, keepdims=False)

# """
# class Integrator_layer(tf.keras.layers.Layer):
#     def __init__(self, n_steps=100, integration_window=100, time_constant=1.0, leakyness=0.0,
#                  V_m_threshold = 2.0, refractory_period=0, amplitude=1.0, V_m_min=0, V_cm=2.5, device='cuda', name='I&F'):
#         super(Integrator_layer, self).__init__(name=name)
#         # self.threshold = nn.Threshold(V_m_threshold, 0)
#         # self.zero = torch.tensor(0, dtype=torch.float, device=device)
#         self.Vm_threshold = V_m_threshold
#         self.integration_window = integration_window
#         self.refractory_period = refractory_period
#         self.time_constant = time_constant
#         # self.epsilon = 0.001
#         self.epsilon = tf.keras.backend.epsilon
#         self.amplitude = amplitude
#         # self.threshold = nn.Threshold(V_m_threshold - self.epsilon, 0) ### Thresholding function
#         # self.threshold = tf.nn.relu(V_m_threshold - self.epsilon, 0)  ### Thresholding function
#         self.V_m_min = V_m_min
#         self.device = device
#
#     @tf.function
#     def chunk_sizes(self, length, chunk_size):
#         chunks = [chunk_size for x in range(length//chunk_size)]
#         if length % chunk_size != 0:
#             chunks.append(length % chunk_size)
#         return chunks
#
#     def build(self, input_shape):
#         self.batch_size = input_shape[0]
#         self.timesteps = input_shape[1]
#         self.image_shape = input_shape[2:]
#         # self.chunk_sizes = self.chunk_sizes(self.timesteps, self.integration_window)
#         self.chunk_sizes = self.chunk_sizes(input_shape[1], self.integration_window)
#         ###
#         ###
#         ###
#         # self.list_of_indices = [[x, 0] for x in tf.range(input_shape[0])]
#         # self.list_of_indices = tf.range(input_shape[0])
#
#     @tf.function
#     def call(self, inputs):
#         ### List of indices - list of indices to replace very first timestep with zero after the roll operation
#         list_of_indices = tf.pad(tf.expand_dims(tf.range(tf.shape(inputs)[0]), axis=1),
#                                  paddings=[[0, 0], [0, 1]],
#                                  mode="CONSTANT")
#         images_chunks = tf.split(inputs, self.chunk_sizes, axis=1) ### Fragment current sample into multiple chunks with length equal to the integration window
#         first_chunk = True
#         # zero = torch.tensor(0, dtype=torch.float, device=self.device)
#         for chunk, n_timesteps in zip(images_chunks, self.chunk_sizes):
#             ### n_timesteps - the number of timesteps for current chunk of integration window
#             Spikes_out = tf.zeros([tf.shape(chunk)[0], *self.image_shape, n_timesteps + 1])
#             ### V_m_out - array for storing membrane potential
#             V_m_out = tf.zeros_like(chunk)
#             V_m_temp = tf.zeros_like(chunk)
#             while tf.math.count_nonzero(V_m_temp) != 0:
#                 ### V_m_chunk - cumulative summation (integration) along time dimension
#                 V_m_chunk = tf.math.cumsum(tf.math.multiply(chunk, self.time_constant), axis=1)
#                 ### Thresholding chunks, all values bellow threshold value are zeroed
#                 V_m_temp = tf.nn.relu(V_m_chunk - self.Vm_threshold)
#                 if tf.math.count_nonzero(V_m_temp) == 0: ### if Vm did not cross threshold, break the cycle
#                     V_m_out = V_m_out + V_m_chunk
#                     break
#                 ### Cumsum of the thresholded cumsum - to avoid any future threshold crossings (additional zeroes) that can occur after threshold is hit:
#                 V_m_temp = tf.math.cumsum(V_m_temp, axis=1)
#                 ### V_m_temp == 0 The amount of zero values before function crosses the threshold. Used to calculated how many timesteps it took for an integrator to fire an output spike
#                 Spikes_out = Spikes_out + tf.one_hot(tf.reduce_sum(tf.cast((V_m_temp == 0), tf.int32), axis=1), depth=n_timesteps + 1)### One hotted zero counts
#                 ### TF roll operation is used to shift the vector values by 1, other timestep which crossed threshold is not included:
#                 V_m_temp = tf.roll(V_m_temp, shift=1, axis=1)
#                 ###Since roll operation will shift the last value to the first place, the first value should be 0'ed for a proper counting of 0 in the next code fragments.
#                 V_m_temp = tf.tensor_scatter_nd_update(V_m_temp, indices=list_of_indices,
#                                                        updates=tf.zeros([1, *self.image_shape]))
#                 V_m_out = tf.where(V_m_temp == 0, V_m_out + V_m_chunk, 0) ### Resets V_m to 0 after firing
#                 if self.refractory_period!=0: ### Resets (=0) number of timesteps after output spike is fired
#                     V_m_temp = tf.roll(chunk, shift=self.refractory_period, axis=1)
#                     V_m_temp[:, 0:(self.refractory_period-1), :, :, :] = 0
#                 chunk = tf.where(V_m_temp == 0.0, 0.0, chunk) ### Removes spikes before firing. So new V_m can be calculated for a next spike.
#             # Spikes_out = torch.narrow(Spikes_out, dim=-1, start=0, length= n_timesteps)
#             Spikes_out, _ = tf.split(Spikes_out, [n_timesteps, 1], axis=-1) ### Onehot operation adds back time dimension to the last place, so it must be popped out
#             if first_chunk:
#                 V_m_final = V_m_out
#                 Spikes_out_final = Spikes_out
#                 first_chunk = False
#             else:
#                 V_m_final = tf.concat((V_m_final, V_m_out), axis=1)
#                 Spikes_out_final = tf.concat((Spikes_out_final, Spikes_out), axis=-1)
#
#         # Spikes_out_final = torch.movedim(Spikes_out_final, source=-1, destination=1)
#         Spikes_out_final = tf.experimental.numpy.swapaxes(Spikes_out_final, axis1=-1,
#                                          axis2=1)  ### Onehotting puts time as the last tensor dimension. 'movedim' moves time dimension to the 2nd place, after the batch number, as it was before.
#
#         # return V_m_final, Spikes_out_final
#         # print('LIF forward end:')
#         # print(f'{datetime.now().time().replace(microsecond=0)} --- ')
#         # print(Spikes_out.type())
#         if self.amplitude !=1.0:
#             Spikes_out_final = Spikes_out_final*self.amplitude
#         return Spikes_out_final
# """
#
# def sparse_data_generator_non_spiking(input_images, input_labels, batch_size=32, nb_steps=100, shuffle=True, flatten= False):
#     """ This generator takes datasets in analog format and generates network input as constant currents.
#         If repeat=True, encoding is rate-based, otherwise it is a latency encoding
#     Args:
#         X: The data ( sample x event x 2 ) the last dim holds (time,neuron) tuples
#         y: The labels
#     """
#
# # def argument_free_generator():
#     # data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=n_workers)
#     data_loader_original = tf.data.Dataset.from_tensor_slices((tf.cast(input_images, tf.float32), input_labels))
#     if shuffle:
#         data_loader_original = data_loader_original.shuffle(buffer_size=100)
#     data_loader = data_loader_original.batch(batch_size=batch_size, drop_remainder=False)
#
#     number_of_batches = input_labels.__len__() // batch_size
#     counter = 0
#     time = tm.time()
#
#     for X, y in data_loader:
#         if flatten:
#             X = X.reshape(X.shape[0], -1)
#         # sample_dims = np.array(X.shape[1:], dtype=int)
#         sample_dims = X.shape[1:]
#         # X = torch.unsqueeze(X, dim=1)
#         X = tf.expand_dims(X, axis=1)
#         X = tf.repeat(X, repeats=nb_steps, axis=1)
#         time_taken = tm.time() - time
#         time = tm.time()
#         ETA = time_taken * (number_of_batches - counter)
#         sys.stdout.write(
#             "\rBatch: {0}/{1}, Progress: {2:0.2f}%, Time to process last batch: {3:0.2f} seconds, Estimated time to finish epoch: {4:0.2f} seconds | {5}:{6} minutes".format(
#                 counter, number_of_batches, (counter / number_of_batches) * 100, time_taken, ETA, int(ETA // 60),
#                 int(ETA % 60)))
#         sys.stdout.flush()
#         # X_batch = torch.tensor(X, device=device, dtype=torch.float)
#         # yield X.expand(-1, nb_steps, *sample_dims).to(device), y.to(device)  ### Returns this values after each batch
#         counter += 1
#         yield X, y  ### Returns this values after each batch
#
# # return argument_free_generator()
#
#
# class Reduce_sum(tf.keras.layers.Layer):
#     def __init__(self, name=None):
#         super(Reduce_sum, self).__init__(name=name)
#
#     def call(self, inputs):
#         return tf.math.reduce_sum(inputs, axis=1, keepdims=False)
#
#