from PIL import Image from transformers import ViTFeatureExtractor, ViTForImageClassification import warnings import requests import gradio as gr warnings.filterwarnings('ignore') # Load the pre-trained Vision Transformer model and feature extractor model_name = "google/vit-base-patch16-224" feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) model = ViTForImageClassification.from_pretrained(model_name) # API keys for the Nutritionix API nutritionix_app_id = '368711d5' nutritionix_api_key = '2d35fd0c4b1503f917ce9a8230d772a8' def identify_image(image_path): """Identify the food item in the image.""" image = Image.open(image_path) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() predicted_label = model.config.id2label[predicted_class_idx] food_name = predicted_label.split(',')[0] return food_name def get_calories(food_name): """Get the calorie information of the identified food item.""" api_url = 'https://trackapi.nutritionix.com/v2/natural/nutrients' headers = { 'x-app-id': nutritionix_app_id, 'x-app-key': nutritionix_api_key, 'Content-Type': 'application/json' } data = {"query": food_name} response = requests.post(api_url, headers=headers, json=data) if response.status_code == requests.codes.ok: nutrition_info = response.json() else: nutrition_info = {"Error": response.status_code, "Message": response.text} return nutrition_info def format_nutrition_info(nutrition_info): """Format the nutritional information into an HTML table.""" if "Error" in nutrition_info: return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}" if len(nutrition_info['foods']) == 0: return "No nutritional information found." nutrition_data = nutrition_info['foods'][0] table = f"""
Nutrition Facts
Food Name: {nutrition_data['food_name']}
Calories{nutrition_data['nf_calories']} Serving Size (g){nutrition_data['serving_weight_grams']}
Total Fat (g){nutrition_data['nf_total_fat']} Saturated Fat (g){nutrition_data['nf_saturated_fat']}
Protein (g){nutrition_data['nf_protein']} Sodium (mg){nutrition_data['nf_sodium']}
Potassium (mg){nutrition_data['nf_potassium']} Cholesterol (mg){nutrition_data['nf_cholesterol']}
Total Carbohydrates (g){nutrition_data['nf_total_carbohydrate']} Fiber (g){nutrition_data['nf_dietary_fiber']}
Sugar (g){nutrition_data['nf_sugars']}
""" return table def main_process(image_path): """Identify the food item and fetch its calorie information.""" food_name = identify_image(image_path) nutrition_info = get_calories(food_name) formatted_nutrition_info = format_nutrition_info(nutrition_info) return formatted_nutrition_info # Define the Gradio interface def gradio_interface(image): formatted_nutrition_info = main_process(image) return formatted_nutrition_info # Create the Gradio UI iface = gr.Interface( fn=gradio_interface, inputs=gr.Image(type="filepath"), outputs="html", title="Food Identification and Nutrition Info", description="Upload an image of food to get nutritional information.", allow_flagging="never" # Disable flagging ) # Launch the Gradio app if __name__ == "__main__": iface.launch()