import os import re import logging from datetime import datetime from typing import List, Dict, Any, Optional from fastapi import FastAPI, HTTPException, File, UploadFile from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field import torch from transformers import ( AutoTokenizer, AutoModel, AutoModelForMaskedLM, pipeline ) import numpy as np # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize FastAPI app app = FastAPI( title="SobroJuriBert API - Full Version", description="French Legal AI API powered by JuriBERT with complete functionality", version="2.0.0" ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Global model storage models = {} tokenizers = {} models_loaded = False # Pydantic models class TextRequest(BaseModel): text: str = Field(..., description="Text to analyze") class MaskFillRequest(BaseModel): text: str = Field(..., description="Text with [MASK] tokens") top_k: int = Field(5, description="Number of predictions to return") class NERRequest(BaseModel): text: str = Field(..., description="Legal text for entity extraction") class QARequest(BaseModel): context: str = Field(..., description="Legal document context") question: str = Field(..., description="Question about the document") class ClassificationRequest(BaseModel): text: str = Field(..., description="Legal document to classify") class EmbeddingRequest(BaseModel): texts: List[str] = Field(..., description="List of texts to embed") async def load_models_on_demand(): """Load models on first request""" global models_loaded if models_loaded: return logger.info("Loading JuriBERT models on demand...") try: # Load JuriBERT for embeddings and mask filling models['juribert_base'] = AutoModel.from_pretrained( 'dascim/juribert-base', cache_dir="/app/.cache/huggingface" ) tokenizers['juribert_base'] = AutoTokenizer.from_pretrained( 'dascim/juribert-base', cache_dir="/app/.cache/huggingface" ) models['juribert_mlm'] = AutoModelForMaskedLM.from_pretrained( 'dascim/juribert-base', cache_dir="/app/.cache/huggingface" ) models_loaded = True logger.info("JuriBERT models loaded successfully!") except Exception as e: logger.error(f"Error loading models: {e}") raise HTTPException(status_code=503, detail="Models could not be loaded") @app.get("/") async def root(): """Root endpoint with API information""" return { "name": "SobroJuriBert API - Full Version", "version": "2.0.0", "description": "Complete French Legal AI API", "status": "operational", "endpoints": { "mask_fill": "/mask-fill - Fill masked tokens in legal text", "embeddings": "/embeddings - Generate legal text embeddings", "ner": "/ner - Extract legal entities (enhanced)", "qa": "/qa - Answer questions about legal documents", "classify": "/classify - Classify legal documents", "health": "/health - Health check" }, "models": { "base": "dascim/juribert-base", "status": "loaded" if models_loaded else "on-demand" } } @app.post("/mask-fill") async def mask_fill(request: MaskFillRequest): """Fill [MASK] tokens in French legal text using JuriBERT""" await load_models_on_demand() try: tokenizer = tokenizers['juribert_base'] model = models['juribert_mlm'] # Create pipeline fill_mask = pipeline( 'fill-mask', model=model, tokenizer=tokenizer, device=-1 # CPU ) # Get predictions predictions = fill_mask(request.text, top_k=request.top_k) return { "input": request.text, "predictions": [ { "sequence": pred['sequence'], "score": float(pred['score']), "token": pred['token_str'] } for pred in predictions ] } except Exception as e: logger.error(f"Mask fill error: {e}") raise HTTPException(status_code=500, detail=str(e)) @app.post("/embeddings") async def generate_embeddings(request: EmbeddingRequest): """Generate embeddings for French legal texts using JuriBERT""" await load_models_on_demand() try: tokenizer = tokenizers['juribert_base'] model = models['juribert_base'] embeddings = [] for text in request.texts: # Tokenize inputs = tokenizer( text, return_tensors="pt", truncation=True, max_length=512, padding=True ) # Generate embeddings with torch.no_grad(): outputs = model(**inputs) # Use mean pooling attention_mask = inputs['attention_mask'] token_embeddings = outputs.last_hidden_state input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) embeddings.append(embedding.squeeze().numpy().tolist()) return { "embeddings": embeddings, "dimension": len(embeddings[0]) if embeddings else 0, "model": "juribert-base" } except Exception as e: logger.error(f"Embedding error: {e}") raise HTTPException(status_code=500, detail=str(e)) def extract_enhanced_entities(text: str) -> List[Dict[str, Any]]: """Enhanced entity extraction for French legal text""" entities = [] # Extract persons (PER) person_patterns = [ r'\b(?:M\.|Mme|Mlle|Me|Dr|Prof\.?)\s+[A-Z][a-zÀ-ÿ]+(?:\s+[A-Z][a-zÀ-ÿ]+)*', r'\b[A-Z][a-zÀ-ÿ]+\s+[A-Z][A-Z]+\b', # Jean DUPONT ] for pattern in person_patterns: for match in re.finditer(pattern, text): entities.append({ "text": match.group(), "type": "PER", "start": match.start(), "end": match.end() }) # Extract money amounts (MONEY) money_patterns = [ r'\b\d{1,3}(?:\s?\d{3})*(?:[,\.]\d{2})?\s?(?:€|EUR|euros?)\b', r'\b(?:€|EUR)\s?\d{1,3}(?:\s?\d{3})*(?:[,\.]\d{2})?\b', ] for pattern in money_patterns: for match in re.finditer(pattern, text, re.IGNORECASE): entities.append({ "text": match.group(), "type": "MONEY", "start": match.start(), "end": match.end() }) # Extract legal references (LEGAL_REF) legal_patterns = [ r'article\s+(?:L\.?)?\d+(?:-\d+)?(?:\s+(?:alinéa|al\.)\s+\d+)?', r'articles?\s+\d+\s+(?:à|et)\s+\d+', r'(?:loi|décret|ordonnance)\s+n°\s*\d{4}-\d+', r'directive\s+\d{4}/\d+/[A-Z]+', ] for pattern in legal_patterns: for match in re.finditer(pattern, text, re.IGNORECASE): entities.append({ "text": match.group(), "type": "LEGAL_REF", "start": match.start(), "end": match.end() }) # Extract dates (DATE) date_patterns = [ r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', r'\b\d{1,2}\s+(?:janvier|février|mars|avril|mai|juin|juillet|août|septembre|octobre|novembre|décembre)\s+\d{4}\b', ] for pattern in date_patterns: for match in re.finditer(pattern, text, re.IGNORECASE): entities.append({ "text": match.group(), "type": "DATE", "start": match.start(), "end": match.end() }) # Extract organizations (ORG) org_patterns = [ r'\b(?:SARL|SAS|SA|EURL|SCI|SASU|SNC)\s+[A-Z][A-Za-zÀ-ÿ\s&\'-]+', r'\b(?:Société|Entreprise|Compagnie|Association)\s+[A-Z][A-Za-zÀ-ÿ\s&\'-]+', ] for pattern in org_patterns: for match in re.finditer(pattern, text): entities.append({ "text": match.group(), "type": "ORG", "start": match.start(), "end": match.end() }) # Extract courts (COURT) court_patterns = [ r'(?:Cour|Tribunal|Conseil)\s+(?:de\s+)?[A-Za-zÀ-ÿ\s\'-]+?(?=\s|,|\.)', ] for pattern in court_patterns: for match in re.finditer(pattern, text, re.IGNORECASE): entities.append({ "text": match.group().strip(), "type": "COURT", "start": match.start(), "end": match.end() }) # Remove duplicates and sort by position seen = set() unique_entities = [] for ent in sorted(entities, key=lambda x: x['start']): key = (ent['text'], ent['type'], ent['start']) if key not in seen: seen.add(key) unique_entities.append(ent) return unique_entities @app.post("/ner") async def extract_entities(request: NERRequest): """Enhanced NER for French legal text""" try: entities = extract_enhanced_entities(request.text) # Group by type for summary entity_summary = {} for ent in entities: if ent['type'] not in entity_summary: entity_summary[ent['type']] = [] entity_summary[ent['type']].append(ent['text']) return { "entities": entities, "summary": { ent_type: list(set(texts)) # Unique entities per type for ent_type, texts in entity_summary.items() }, "total": len(entities), "text": request.text } except Exception as e: logger.error(f"NER error: {e}") raise HTTPException(status_code=500, detail=str(e)) @app.post("/qa") async def question_answering(request: QARequest): """Answer questions about French legal documents""" await load_models_on_demand() try: # Generate embeddings for context and question embedding_req = EmbeddingRequest(texts=[request.context, request.question]) embeddings = await generate_embeddings(embedding_req) context_emb = np.array(embeddings['embeddings'][0]) question_emb = np.array(embeddings['embeddings'][1]) # Calculate similarity similarity = np.dot(context_emb, question_emb) / (np.linalg.norm(context_emb) * np.linalg.norm(question_emb)) # Extract relevant part of context based on question keywords question_words = set(request.question.lower().split()) sentences = request.context.split('.') relevant_sentences = [] for sent in sentences: sent_words = set(sent.lower().split()) overlap = len(question_words & sent_words) if overlap > 0: relevant_sentences.append((sent.strip(), overlap)) # Sort by relevance relevant_sentences.sort(key=lambda x: x[1], reverse=True) if relevant_sentences: answer = relevant_sentences[0][0] confidence = min(0.9, similarity + 0.3) else: answer = "Aucune réponse trouvée dans le contexte fourni." confidence = 0.1 return { "question": request.question, "answer": answer, "confidence": float(confidence), "context_relevance": float(similarity), "model": "juribert-base (similarity-based QA)" } except Exception as e: logger.error(f"QA error: {e}") raise HTTPException(status_code=500, detail=str(e)) @app.post("/classify") async def classify_document(request: ClassificationRequest): """Enhanced document classification""" try: text_lower = request.text.lower() # Enhanced categories with more keywords categories = { "contract": { "keywords": ["contrat", "accord", "convention", "parties", "obligations", "clause", "engagement"], "weight": 1.0 }, "litigation": { "keywords": ["tribunal", "jugement", "litige", "procès", "avocat", "défendeur", "demandeur", "arrêt", "décision"], "weight": 1.2 }, "corporate": { "keywords": ["société", "sarl", "sas", "entreprise", "capital", "associés", "statuts", "assemblée"], "weight": 1.0 }, "employment": { "keywords": ["travail", "salarié", "employeur", "licenciement", "contrat de travail", "cdi", "cdd", "rupture"], "weight": 1.1 }, "real_estate": { "keywords": ["immobilier", "location", "bail", "propriété", "locataire", "propriétaire", "loyer"], "weight": 1.0 }, "intellectual_property": { "keywords": ["brevet", "marque", "propriété intellectuelle", "invention", "droit d'auteur", "œuvre"], "weight": 1.0 } } scores = {} matched_keywords = {} for category, info in categories.items(): score = 0 keywords_found = [] for keyword in info['keywords']: if keyword in text_lower: count = text_lower.count(keyword) score += count * info['weight'] keywords_found.append(keyword) if score > 0: scores[category] = score matched_keywords[category] = keywords_found if not scores: primary_category = "general" confidence = 0.3 else: total_score = sum(scores.values()) primary_category = max(scores, key=scores.get) confidence = min(0.95, scores[primary_category] / total_score + 0.2) return { "primary_category": primary_category, "categories": [ { "category": cat, "score": score, "keywords_found": matched_keywords.get(cat, []) } for cat, score in sorted(scores.items(), key=lambda x: x[1], reverse=True) ], "confidence": float(confidence), "document_type": "legal_document" } except Exception as e: logger.error(f"Classification error: {e}") raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def health_check(): """Health check endpoint""" return { "status": "healthy", "timestamp": datetime.utcnow().isoformat(), "version": "2.0.0", "models_loaded": models_loaded, "available_models": list(models.keys()) } if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)