Spaces:
Sleeping
Sleeping
File size: 1,796 Bytes
c914f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
title: SobroJuriBert
emoji: ⚖️
colorFrom: blue
colorTo: indigo
sdk: docker
pinned: true
license: apache-2.0
---
# SobroJuriBert - French Legal AI Assistant
Production-ready API for French legal document analysis powered by JuriBERT.
## Features
### Core Capabilities
- **Mask Filling**: Complete masked tokens in French legal text using JuriBERT
- **Embeddings**: Generate semantic embeddings for legal documents
- **Named Entity Recognition**: Extract legal entities (courts, articles, parties, dates)
- **Question Answering**: Answer questions about legal documents
- **Document Classification**: Classify legal documents by type and domain
- **Contract Analysis**: Comprehensive contract analysis with risk assessment
### Models Used
- **JuriBERT**: French legal BERT trained on 6.3GB of Légifrance data
- **CamemBERT-NER**: For named entity recognition
### API Endpoints
#### Text Analysis
- `POST /mask-fill` - Fill [MASK] tokens in legal text
- `POST /embeddings` - Generate text embeddings
- `POST /ner` - Extract named entities
- `POST /qa` - Question answering
- `POST /classify` - Document classification
- `POST /analyze-contract` - Contract analysis
## Usage
### Example: Mask Filling
```python
import requests
response = requests.post(
"https://sobroinc-sobrojuribert.hf.space/mask-fill",
json={
"text": "Le contrat est signé entre les [MASK].",
"top_k": 3
}
)
```
### Example: Named Entity Recognition
```python
response = requests.post(
"https://sobroinc-sobrojuribert.hf.space/ner",
json={
"text": "Le Tribunal de Grande Instance de Paris a rendu sa décision le 15 janvier 2024"
}
)
```
## About
Created by Sobro Inc. for French legal professionals.
Powered by JuriBERT and state-of-the-art French NLP models. |