File size: 5,853 Bytes
fe17ce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import torch
import spaces
import tempfile
import soundfile as sf
import gradio as gr
import librosa as lb
import yaml
import numpy as np
import matplotlib.pyplot as plt
from model.cleanmel import CleanMel
from model.vocos.pretrained import Vocos
from model.stft import InputSTFT, TargetMel
DEVICE = torch.device("cuda:5")
def read_audio(file_path):
audio, sample_rate = sf.read(file_path)
if audio.ndim > 1:
audio = audio[:, 0]
if sample_rate != 16000:
audio = lb.resample(audio, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
return torch.tensor(audio).float().squeeze().unsqueeze(0)
def stft(audio):
transform = InputSTFT(
n_fft=512,
n_win=512,
n_hop=128,
normalize=False,
center=True,
onesided=True,
online=False
).eval().to(DEVICE)
return transform(audio)
def mel_transform(audio, X_norm):
transform = TargetMel(
sample_rate=16000,
n_fft=512,
n_win=512,
n_hop=128,
n_mels=80,
f_min=0,
f_max=8000,
power=2,
center=True,
normalize=False,
onesided=True,
mel_norm="slaney",
mel_scale="slaney",
librosa_mel=True,
online=False
).eval().to(DEVICE)
return transform(audio, X_norm)
def load_cleanmel(model_name):
model_config = f"./configs/cleanmel_offline.yaml"
model_config = yaml.safe_load(open(model_config, "r"))["model"]["arch"]["init_args"]
cleanmel = CleanMel(**model_config)
cleanmel.load_state_dict(torch.load(f"./ckpts/CleanMel/{model_name}.ckpt"))
return cleanmel.eval()
def load_vocos():
vocos = Vocos.from_hparams(config_path="./configs/vocos_offline.yaml")
vocos = Vocos.from_pretrained(None, model_path=f"./ckpts/Vocos/vocos_offline.pt", model=vocos)
return vocos.eval()
def get_mrm_pred(Y_hat, x, X_norm):
X_noisy = mel_transform(x, X_norm)
Y_hat = Y_hat.squeeze()
Y_hat = torch.square(Y_hat * (torch.sqrt(X_noisy) + 1e-10))
return Y_hat
def safe_log(x):
return torch.log(torch.clip(x, min=1e-5))
def output(y_hat, logMel_hat):
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
sf.write(tmp_file.name, y_hat.squeeze().cpu().numpy(), 16000)
with tempfile.NamedTemporaryFile(suffix='.npy', delete=False) as tmp_logmel_np_file:
np.save(tmp_logmel_np_file.name, logMel_hat.squeeze().cpu().numpy())
logMel_img = logMel_hat.squeeze().cpu().numpy()[::-1, :]
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_logmel_img:
# give a plt figure size according to the logMel shape
plt.figure(figsize=(logMel_img.shape[1] / 100, logMel_img.shape[0] / 50))
plt.clf()
plt.imshow(logMel_img, vmin=-11, cmap="jet")
plt.tight_layout()
plt.ylabel("Mel bands")
plt.xlabel("Time (second)")
plt.yticks([0, 80], [80, 0])
dur = y_hat.shape[-1] / 16000
xticks = [int(x) for x in np.linspace(0, logMel_img.shape[-1], 11)]
xticks_str = ["{:.1f}".format(x) for x in np.linspace(0, dur, 11)]
plt.xticks(xticks, xticks_str)
plt.savefig(tmp_logmel_img.name)
return tmp_file.name, tmp_logmel_img.name, tmp_logmel_np_file.name
@spaces.GPU
@torch.inference_mode()
def enhance_cleanmel_L_mask(audio_path):
model = load_cleanmel("offline_CleanMel_L_mask").to(DEVICE)
vocos = load_vocos().to(DEVICE)
x = read_audio(audio_path).to(DEVICE)
X, X_norm = stft(x)
Y_hat = model(X, inference=True)
MRM_hat = torch.sigmoid(Y_hat)
Y_hat = get_mrm_pred(MRM_hat, x, X_norm)
logMel_hat = safe_log(Y_hat)
y_hat = vocos(logMel_hat, X_norm).clamp(min=-1, max=1)
return output(y_hat, logMel_hat)
@spaces.GPU
@torch.inference_mode()
def enhance_cleanmel_L_map(audio_path):
model = load_cleanmel("offline_CleanMel_L_map").to(DEVICE)
vocos = load_vocos().to(DEVICE)
x = read_audio(audio_path).to(DEVICE)
X, X_norm = stft(x)
logMel_hat = model(X, inference=True)
y_hat = vocos(logMel_hat, X_norm).clamp(min=-1, max=1)
return output(y_hat, logMel_hat)
def reset_everything():
"""Reset all components to initial state"""
return None, None, None
if __name__ == "__main__":
demo = gr.Blocks()
with gr.Blocks(title="CleanMel Demo") as demo:
gr.Markdown("## CleanMel Demo")
gr.Markdown("This demo showcases the CleanMel model for speech enhancement.")
with gr.Row():
audio_input = gr.Audio(label="Input Audio", type="filepath", sources="upload")
with gr.Column():
enhance_button_map = gr.Button("Enhance Audio (offline CleanMel_L_map)")
enhance_button_mask = gr.Button("Enhance Audio (offline CleanMel_L_mask)")
clear_btn = gr.Button(
"🗑️ Clear All",
variant="secondary",
size="lg"
)
output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
output_mel = gr.Image(label="Output LogMel Spectrogram", type="filepath", visible=True)
output_np = gr.File(label="Enhanced LogMel Spec. (.npy)", type="filepath")
enhance_button_map.click(
enhance_cleanmel_L_map,
inputs=audio_input,
outputs=[output_audio, output_mel, output_np]
)
enhance_button_mask.click(
enhance_cleanmel_L_mask,
inputs=audio_input,
outputs=[output_audio, output_mel, output_np]
)
clear_btn.click(
fn=reset_everything,
outputs=[output_audio, output_mel, output_np]
)
demo.launch(debug=False, share=True) |