File size: 5,853 Bytes
fe17ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import spaces
import tempfile
import soundfile as sf
import gradio as gr
import librosa as lb
import yaml
import numpy as np
import matplotlib.pyplot as plt
from model.cleanmel import CleanMel
from model.vocos.pretrained import Vocos
from model.stft import InputSTFT, TargetMel

DEVICE = torch.device("cuda:5")

def read_audio(file_path):
    audio, sample_rate = sf.read(file_path)
    if audio.ndim > 1:
        audio = audio[:, 0]
    if sample_rate != 16000:
        audio = lb.resample(audio, orig_sr=sample_rate, target_sr=16000)
        sample_rate = 16000

    return torch.tensor(audio).float().squeeze().unsqueeze(0)

def stft(audio):
    transform = InputSTFT(
            n_fft=512,
            n_win=512,
            n_hop=128,
            normalize=False,
            center=True,
            onesided=True,
            online=False
        ).eval().to(DEVICE)
    return transform(audio)

def mel_transform(audio, X_norm):
    transform = TargetMel(
        sample_rate=16000,
        n_fft=512,
        n_win=512,
        n_hop=128,
        n_mels=80,
        f_min=0,
        f_max=8000,
        power=2,
        center=True,
        normalize=False,
        onesided=True,
        mel_norm="slaney",
        mel_scale="slaney",
        librosa_mel=True,
        online=False
    ).eval().to(DEVICE)
    return transform(audio, X_norm)

def load_cleanmel(model_name):
    model_config = f"./configs/cleanmel_offline.yaml"
    model_config = yaml.safe_load(open(model_config, "r"))["model"]["arch"]["init_args"]
    cleanmel = CleanMel(**model_config)
    cleanmel.load_state_dict(torch.load(f"./ckpts/CleanMel/{model_name}.ckpt"))
    return cleanmel.eval()

def load_vocos():
    vocos = Vocos.from_hparams(config_path="./configs/vocos_offline.yaml")
    vocos = Vocos.from_pretrained(None, model_path=f"./ckpts/Vocos/vocos_offline.pt", model=vocos)
    return vocos.eval()

def get_mrm_pred(Y_hat, x, X_norm):
    X_noisy = mel_transform(x, X_norm)
    Y_hat = Y_hat.squeeze()
    Y_hat = torch.square(Y_hat * (torch.sqrt(X_noisy) + 1e-10))
    return Y_hat

def safe_log(x):           
    return torch.log(torch.clip(x, min=1e-5)) 

def output(y_hat, logMel_hat):
    with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
        sf.write(tmp_file.name, y_hat.squeeze().cpu().numpy(), 16000)
    with tempfile.NamedTemporaryFile(suffix='.npy', delete=False) as tmp_logmel_np_file:
        np.save(tmp_logmel_np_file.name, logMel_hat.squeeze().cpu().numpy())
    logMel_img = logMel_hat.squeeze().cpu().numpy()[::-1, :]
    with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_logmel_img:
        # give a plt figure size according to the logMel shape
        plt.figure(figsize=(logMel_img.shape[1] / 100, logMel_img.shape[0] / 50))
        plt.clf()
        plt.imshow(logMel_img, vmin=-11, cmap="jet")
        plt.tight_layout()
        plt.ylabel("Mel bands")
        plt.xlabel("Time (second)")
        plt.yticks([0, 80], [80, 0])
        dur = y_hat.shape[-1] / 16000
        xticks = [int(x) for x in np.linspace(0, logMel_img.shape[-1], 11)]
        xticks_str = ["{:.1f}".format(x) for x in np.linspace(0, dur, 11)]
        plt.xticks(xticks, xticks_str)
        plt.savefig(tmp_logmel_img.name)
    
    return tmp_file.name, tmp_logmel_img.name, tmp_logmel_np_file.name

@spaces.GPU
@torch.inference_mode()
def enhance_cleanmel_L_mask(audio_path):
    model = load_cleanmel("offline_CleanMel_L_mask").to(DEVICE)
    vocos = load_vocos().to(DEVICE)
    x = read_audio(audio_path).to(DEVICE)
    X, X_norm = stft(x)
    Y_hat = model(X, inference=True)
    MRM_hat = torch.sigmoid(Y_hat)
    Y_hat = get_mrm_pred(MRM_hat, x, X_norm)
    logMel_hat = safe_log(Y_hat)
    y_hat = vocos(logMel_hat, X_norm).clamp(min=-1, max=1)
    return output(y_hat, logMel_hat)

@spaces.GPU
@torch.inference_mode()
def enhance_cleanmel_L_map(audio_path):
    model = load_cleanmel("offline_CleanMel_L_map").to(DEVICE)
    vocos = load_vocos().to(DEVICE)
    x = read_audio(audio_path).to(DEVICE)
    X, X_norm = stft(x)
    logMel_hat = model(X, inference=True)
    y_hat = vocos(logMel_hat, X_norm).clamp(min=-1, max=1)
    return output(y_hat, logMel_hat)

def reset_everything():
    """Reset all components to initial state"""
    return None, None, None

if __name__ == "__main__":
    demo = gr.Blocks()
    with gr.Blocks(title="CleanMel Demo") as demo:
        gr.Markdown("## CleanMel Demo")
        gr.Markdown("This demo showcases the CleanMel model for speech enhancement.")
        
        with gr.Row():
            audio_input = gr.Audio(label="Input Audio", type="filepath", sources="upload")
            with gr.Column():
                enhance_button_map = gr.Button("Enhance Audio (offline CleanMel_L_map)")
                enhance_button_mask = gr.Button("Enhance Audio (offline CleanMel_L_mask)")
                clear_btn = gr.Button(
                    "🗑️ Clear All",
                    variant="secondary",
                    size="lg"
                )
        
        output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
        output_mel = gr.Image(label="Output LogMel Spectrogram", type="filepath", visible=True)
        output_np = gr.File(label="Enhanced LogMel Spec. (.npy)", type="filepath")
        
        enhance_button_map.click(
            enhance_cleanmel_L_map, 
            inputs=audio_input, 
            outputs=[output_audio, output_mel, output_np]
        )
        
        enhance_button_mask.click(
            enhance_cleanmel_L_mask, 
            inputs=audio_input, 
            outputs=[output_audio, output_mel, output_np]
        )
        clear_btn.click(
                fn=reset_everything,
                outputs=[output_audio, output_mel, output_np]
        )

    demo.launch(debug=False, share=True)