SHEN1017 commited on
Commit
96b6673
·
verified ·
1 Parent(s): fd68ff9

Upload 97 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. Dockerfile +0 -0
  3. LICENSE +21 -0
  4. __pycache__/parser.cpython-312.pyc +0 -0
  5. app.py +104 -0
  6. asset/design.png +3 -0
  7. citekit/Dataset/Dataset.py +41 -0
  8. citekit/Dataset/__pycache__/Dataset.cpython-310.pyc +0 -0
  9. citekit/Dataset/__pycache__/Dataset.cpython-312.pyc +0 -0
  10. citekit/__init__.py +1 -0
  11. citekit/__pycache__/__init__.cpython-312.pyc +0 -0
  12. citekit/attribute/__init__.py +0 -0
  13. citekit/attribute/__pycache__/__init__.cpython-312.pyc +0 -0
  14. citekit/attribute/__pycache__/attribute.cpython-312.pyc +0 -0
  15. citekit/attribute/attribute.py +222 -0
  16. citekit/cite_modules/LLM.py +427 -0
  17. citekit/cite_modules/Retrieve.py +99 -0
  18. citekit/cite_modules/__pycache__/LLM.cpython-310.pyc +0 -0
  19. citekit/cite_modules/__pycache__/LLM.cpython-312.pyc +0 -0
  20. citekit/cite_modules/__pycache__/Retrieve.cpython-310.pyc +0 -0
  21. citekit/cite_modules/__pycache__/Retrieve.cpython-312.pyc +0 -0
  22. citekit/cite_modules/__pycache__/augment_model.cpython-310.pyc +0 -0
  23. citekit/cite_modules/__pycache__/augment_model.cpython-312.pyc +0 -0
  24. citekit/cite_modules/augment_model.py +455 -0
  25. citekit/evaluator/__init__.py +0 -0
  26. citekit/evaluator/__pycache__/__init__.cpython-310.pyc +0 -0
  27. citekit/evaluator/__pycache__/__init__.cpython-312.pyc +0 -0
  28. citekit/evaluator/__pycache__/evaluator.cpython-310.pyc +0 -0
  29. citekit/evaluator/__pycache__/evaluator.cpython-312.pyc +0 -0
  30. citekit/evaluator/evaluator.py +1118 -0
  31. citekit/pipeline/__pycache__/pipeline.cpython-310.pyc +0 -0
  32. citekit/pipeline/__pycache__/pipeline.cpython-312.pyc +0 -0
  33. citekit/pipeline/__pycache__/pipeline_inter.cpython-310.pyc +0 -0
  34. citekit/pipeline/pipeline.py +423 -0
  35. citekit/prompt/__pycache__/prompt.cpython-310.pyc +0 -0
  36. citekit/prompt/__pycache__/prompt.cpython-312.pyc +0 -0
  37. citekit/prompt/prompt.py +294 -0
  38. citekit/utils/__pycache__/utils.cpython-310.pyc +0 -0
  39. citekit/utils/__pycache__/utils.cpython-312.pyc +0 -0
  40. citekit/utils/utils.py +317 -0
  41. context_cite/__init__.py +4 -0
  42. context_cite/__pycache__/__init__.cpython-312.pyc +0 -0
  43. context_cite/__pycache__/__init__.cpython-39.pyc +0 -0
  44. context_cite/__pycache__/context_citer.cpython-312.pyc +0 -0
  45. context_cite/__pycache__/context_citer.cpython-39.pyc +0 -0
  46. context_cite/__pycache__/context_partitioner.cpython-312.pyc +0 -0
  47. context_cite/__pycache__/context_partitioner.cpython-39.pyc +0 -0
  48. context_cite/__pycache__/solver.cpython-312.pyc +0 -0
  49. context_cite/__pycache__/solver.cpython-39.pyc +0 -0
  50. context_cite/__pycache__/utils.cpython-312.pyc +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ asset/design.png filter=lfs diff=lfs merge=lfs -text
Dockerfile ADDED
File without changes
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Jiajun Shen
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
__pycache__/parser.cpython-312.pyc ADDED
Binary file (20.7 kB). View file
 
app.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, send_file, Response
2
+ from flask_cors import CORS
3
+ import openai
4
+ import sys
5
+ import os
6
+ from methods.self_RAG_demo import pipeline, graph
7
+ from citekit.utils.utils import parse_html_config
8
+
9
+ app = Flask(__name__)
10
+ CORS(app) # 允许跨域请求
11
+
12
+
13
+ @app.route("/")
14
+ def index():
15
+ return send_file("index.html")
16
+
17
+
18
+ @app.route("/run_pipeline", methods=["POST"])
19
+ def run_pipeline():
20
+ data = request.json
21
+ if not data:
22
+ return jsonify({"error": "Invalid input data"}), 400
23
+
24
+ try:
25
+ result = pipeline(data) # 直接调用 pipeline 处理数据
26
+ print(result)
27
+ return jsonify(result) # 返回 JSON 结果
28
+ except Exception as e:
29
+ return jsonify({"error": str(e)}), 500
30
+
31
+ @app.route("/get_nodes", methods=["POST"])
32
+ def get_nodes(*args, **kwargs):
33
+ graph.update()
34
+ try:
35
+ return jsonify(graph.get_json())
36
+ except Exception as e:
37
+ return jsonify({"error": str(e)}), 500
38
+
39
+ @app.route("/update", methods=["POST"])
40
+ def update():
41
+
42
+ data = request.json
43
+ update_info = data.get("update_info")
44
+ update_object = data.get('update_object')
45
+ print(update_info, update_object)
46
+ try:
47
+ config, update_info = parse_html_config(update_info)
48
+ print('GOT CONFIG', config, update_info)
49
+ pipeline.update(update_object, config, update_info)
50
+ return jsonify({})
51
+ except Exception as e:
52
+ return jsonify({"error": str(e)}), 500
53
+
54
+
55
+
56
+ @app.route("/get_config", methods=["POST"])
57
+ def get_config():
58
+ data = request.json
59
+ config = data.get("config").lower()
60
+ module_name = data.get("module_name")
61
+ module = pipeline.get_module_by_name(module_name)
62
+
63
+ try:
64
+ if config in ['prompt', 'destination', 'max turn', 'global prompt', 'parallel']:
65
+ return jsonify(module.get_json_config(config))
66
+ else:
67
+ raise NotImplementedError
68
+
69
+
70
+ except Exception as e:
71
+ return jsonify({"error": str(e)}), 500
72
+
73
+ @app.route("/chat", methods=["POST"])
74
+ def chat():
75
+ data = request.json
76
+ api_key = data.get("api_key")
77
+ user_message = data.get("message")
78
+
79
+ if not api_key or not user_message:
80
+ return jsonify({"error": "API Key and message are required"}), 400
81
+
82
+ try:
83
+ openai.api_key = api_key
84
+ response = openai.ChatCompletion.create(
85
+ model="gpt-4o",
86
+ messages=[
87
+ {"role": "system", "content": "You are a helpful assistant that follows the instructions of the user. You will be given a pipeline and (maybe) some datapoints in json format. You will be asked questions about the pipeline or the datapoints. Refuse to answer questions that are not about the pipeline or the datapoints."},
88
+ {"role": "user", "content": user_message}
89
+ ],
90
+ stream=True # 启用流式输出
91
+ )
92
+
93
+ def generate():
94
+ for chunk in response:
95
+ if "choices" in chunk and chunk["choices"]:
96
+ yield chunk["choices"][0]["delta"].get("content", "")
97
+
98
+
99
+ return Response(generate(), content_type="text/event-stream") # 使用流式响应
100
+ except Exception as e:
101
+ return jsonify({"error": str(e)}), 500
102
+
103
+ if __name__ == '__main__':
104
+ app.run(host="0.0.0.0", port=7860)
asset/design.png ADDED

Git LFS Details

  • SHA256: 3c1faa6bd26eb8d540ea26d0658f04d95d6e1f9169bbf1ca007686b961be9741
  • Pointer size: 132 Bytes
  • Size of remote file: 1.43 MB
citekit/Dataset/Dataset.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import Dataset
2
+ import json
3
+
4
+ default_get = lambda key : lambda data: data[key]
5
+
6
+ class PromptDataset(Dataset):
7
+
8
+ def __init__(self,data_dir,*keys,**projections) -> None:
9
+ self.data = []
10
+ for d in data_dir:
11
+ list_contents = {key:default_get(key)(d) for key in keys if key in d.keys()}
12
+ dict_contents = {projection:projections[projection](d) for projection in projections.keys()}
13
+ self.data.append({**list_contents,**dict_contents})
14
+
15
+ def __getitem__(self, index) -> dict:
16
+
17
+ return self.data[index]
18
+
19
+ def __len__(self):
20
+ return len(self.data)
21
+
22
+ class FileDataset(PromptDataset):
23
+
24
+ def __init__(self,data_dir,*keys,**projections) -> None:
25
+ with open(data_dir,'r',encoding='utf-8') as file:
26
+ data_dir = json.load(file)
27
+ if not keys:
28
+ keys = data_dir[0].keys()
29
+
30
+ self.data = []
31
+ for d in data_dir:
32
+ list_contents = {key:default_get(key)(d) for key in keys if key in d.keys()}
33
+ dict_contents = {projection:projections[projection](d) for projection in projections.keys()}
34
+ self.data.append({**list_contents,**dict_contents})
35
+
36
+ def __getitem__(self, index) -> dict:
37
+
38
+ return self.data[index]
39
+
40
+ def __len__(self):
41
+ return len(self.data)
citekit/Dataset/__pycache__/Dataset.cpython-310.pyc ADDED
Binary file (2.39 kB). View file
 
citekit/Dataset/__pycache__/Dataset.cpython-312.pyc ADDED
Binary file (3.14 kB). View file
 
citekit/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from __future__ import absolute_import
citekit/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (207 Bytes). View file
 
citekit/attribute/__init__.py ADDED
File without changes
citekit/attribute/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (164 Bytes). View file
 
citekit/attribute/__pycache__/attribute.cpython-312.pyc ADDED
Binary file (11.9 kB). View file
 
citekit/attribute/attribute.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from context_cite import ContextCiter
3
+ import re
4
+ import torch
5
+ from transformers import LlamaForCausalLM, LlamaTokenizer
6
+
7
+
8
+ def all_normalize(obj):
9
+ all_values = []
10
+ for output_sent_result in obj:
11
+ for each_doc in output_sent_result:
12
+ for each_span in each_doc:
13
+ all_values.append(each_span[1])
14
+ max_val = max(all_values)
15
+ min_val = min(all_values)
16
+ for output_sent_result in obj:
17
+ for i, each_doc in enumerate(output_sent_result):
18
+ for j, each_span in enumerate(each_doc):
19
+ each_span = (each_span[0], (each_span[1] - min_val) / (max_val - min_val))
20
+ output_sent_result[i][j] = each_span
21
+ return obj
22
+
23
+ def all_normalize_in(obj):
24
+ for output_sent_result in obj:
25
+ all_values = []
26
+ for each_doc in output_sent_result:
27
+ for each_span in each_doc:
28
+ all_values.append(each_span[1])
29
+ max_val = max(all_values)
30
+ min_val = min(all_values)
31
+ for i, each_doc in enumerate(output_sent_result):
32
+ for j, each_span in enumerate(each_doc):
33
+ each_span = (each_span[0], (each_span[1] - min_val) / (max_val - min_val))
34
+ output_sent_result[i][j] = each_span
35
+ return obj
36
+
37
+ def load_json(file_path):
38
+
39
+ with open(file_path, 'r') as file:
40
+ data = file.read()
41
+ if file_path.endswith('.jsonl'):
42
+ data = f'[{'},{'.join(data.split("}\n{"))}]'
43
+ objects = json.loads(data)
44
+ return objects
45
+
46
+ def ma(text):
47
+ pattern = r"Document \[\d+\]\(Title:[^)]+\)"
48
+
49
+ match = re.search(pattern, text)
50
+
51
+ if match:
52
+ index = match.end()
53
+ return index
54
+ else:
55
+ return 0
56
+
57
+ def write_json(file_path, data):
58
+ with open(file_path, 'w') as json_file:
59
+ json.dump(data, json_file, indent=4)
60
+
61
+
62
+
63
+ def load_model(model_name_or_path):
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer
65
+ model = AutoModelForCausalLM.from_pretrained(
66
+ model_name_or_path,
67
+ device_map='auto',
68
+ token = 'your token'
69
+ )
70
+
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
72
+ model.eval()
73
+ return model, tokenizer
74
+
75
+
76
+ def compute_log_prob(model, tokenizer, input_text, output_text):
77
+ inputs = tokenizer(input_text, return_tensors="pt")
78
+ output_tokens = tokenizer(output_text, return_tensors="pt")["input_ids"]
79
+
80
+ with torch.no_grad():
81
+ logits = model(**inputs).logits[:, -output_tokens.shape[1]-1:-1, :]
82
+
83
+ log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
84
+ output_log_probs = log_probs.gather(2, output_tokens.unsqueeze(-1)).squeeze(-1)
85
+ return output_log_probs.sum().item()
86
+
87
+ def compute_contributions(model, tokenizer, question, docs, output):
88
+ full_input = question + '\n\n' + '\n'.join(docs)
89
+ base_prob = compute_log_prob(model, tokenizer, full_input, output)
90
+
91
+ contributions = []
92
+ for i in range(len(docs)):
93
+ reduced_docs = docs[:i] + docs[i+1:]
94
+ reduced_input = question + '\n\n' + '\n'.join(reduced_docs)
95
+ reduced_prob = compute_log_prob(model, tokenizer, reduced_input, output)
96
+ contributions.append(base_prob - reduced_prob)
97
+
98
+ return contributions
99
+
100
+ class InterpretableAttributer:
101
+
102
+ def __init__(self, levels=['doc', 'span', 'word'], model = 'gpt-2'):
103
+ for level in levels:
104
+ assert level in ['doc', 'span', 'word'], f'Invalid level: {level}'
105
+ # span before doc
106
+ self.levels = sorted(levels, key=lambda x: ['span', 'doc', 'word'].index(x))
107
+ #self.model, self.tokenizer = load_model(model)
108
+
109
+
110
+ def attribute(self, question, docs, output):
111
+ attribute_results = {}
112
+ for level in self.levels:
113
+ attribute_result = []
114
+ for sentence in output:
115
+ attribute_result.append(self._attribute(question, docs, sentence, level))
116
+ attribute_results[level] = attribute_result
117
+ return attribute_results
118
+
119
+
120
+ def _attribute(self, question, docs, output, level):
121
+ if level == 'doc':
122
+ return self.doc_level_attribution(question, docs, output)
123
+ elif level == 'span':
124
+ return self.span_level_attribution(question, docs, output)
125
+ elif level == 'word':
126
+ return self.word_level_attribution(question, docs, output)
127
+ else:
128
+ raise ValueError(f'Invalid level: {level}')
129
+
130
+ def span_level_attribution(self, question, docs, output):
131
+ # USE CONTEXT CITE
132
+ context = '\n\n'.join(docs)
133
+ response = output
134
+
135
+ cc = ContextCiter(self.model, self.tokenizer, context, question)
136
+ _, prompt = cc._get_prompt_ids(return_prompt=True)
137
+ cc._cache["output"] = prompt + response
138
+ result = cc.get_attributions(as_dataframe=True, top_k=1000).data.to_dict(orient='records')
139
+ return result
140
+
141
+
142
+ def parse_attribution_results(self, docs, results):
143
+ context = '\n\n'.join(docs)
144
+ lens = [len(doc) for doc in docs]
145
+ len_sep = len('\n\n')
146
+ final_results = {}
147
+ for level, result in results.items():
148
+ if level == 'span':
149
+ ordered_all_sents = []
150
+ for output_sent_result in result:
151
+ final_end_for_span = {}
152
+ all_span_results = []
153
+ for each_span in output_sent_result:
154
+ span_text = each_span["Source"]
155
+ span_score = each_span["Score"]
156
+ start = 0
157
+ if span_text in final_end_for_span:
158
+ start = final_end_for_span[span_text]
159
+ span_start = context.find(span_text, start)
160
+ span_end = span_start + len(span_text)
161
+ final_end_for_span[span_text] = span_end
162
+ # locate the document
163
+ doc_idx = 0
164
+ while span_start > lens[doc_idx]:
165
+ span_start -= lens[doc_idx] + len_sep
166
+ span_end -= lens[doc_idx] + len_sep
167
+ doc_idx += 1
168
+ all_span_results.append((span_start, span_score, doc_idx))
169
+ ordered = [[] for _ in range(len(docs))]
170
+ for span_start, span_score, doc_idx in all_span_results:
171
+ ordered[doc_idx].append((span_start, span_score))
172
+ for i in range(len(docs)):
173
+ doc = docs[i]
174
+ real_start = ma(doc)
175
+ ordered[i] = sorted(ordered[i], key=lambda x: x[0])
176
+ ordered[i][0] = (real_start, ordered[i][0][1])
177
+
178
+ ordered_all_sents.append(ordered)
179
+ final_results[level+'_level'] = all_normalize_in(ordered_all_sents)
180
+ elif level == 'doc':
181
+ self.span_to_doc(result)
182
+ else:
183
+ raise NotImplementedError(f'Parsing for {level} not implemented yet')
184
+ return final_results
185
+
186
+ def span_to_doc(self, results):
187
+ import numpy as np
188
+ span_level = results['span_level']
189
+ doc_level = []
190
+ for output_sent_result in span_level:
191
+ doc_level.append([np.mean([span[1] for span in doc]) for doc in output_sent_result])
192
+ results['doc_level'] = doc_level
193
+
194
+
195
+ def attribute_for_result(self, result):
196
+ docs = result['doc_cache']
197
+ question = result['data']['question']
198
+ output = result['output']
199
+ attribution_results = self.attribute(question, docs, output)
200
+ parsed_results = self.parse_attribution_results(docs, attribution_results)
201
+ result.update(parsed_results)
202
+
203
+ if 'doc' not in self.levels:
204
+ # if doc is not in the levels, we need to convert the span level to doc level
205
+ print('Converting span level to doc level...')
206
+ try:
207
+ self.span_to_doc(result)
208
+ print('Conversion successful')
209
+ except Exception as e:
210
+ print(f'Error converting span level to doc level: {e}')
211
+
212
+ def attribute_for_results(self, results):
213
+ for result in results:
214
+ self.attribute_for_result(result)
215
+ return results
216
+
217
+
218
+ if __name__ == '__main__':
219
+ attributer = InterpretableAttributer(levels=['span'])
220
+ results = load_json('res_attr.json')
221
+ attributer.attribute_for_results(results)
222
+ write_json('res_attr_span.json', results)
citekit/cite_modules/LLM.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from citekit.prompt.prompt import Prompt
3
+ import re
4
+ from citekit.utils.utils import one_paragraph, first_sentence, make_as
5
+ import random
6
+ import os
7
+
8
+
9
+
10
+ class Module:
11
+ module_count = 1
12
+ def __init__(self,prompt_maker: Prompt = None, pipeline = None, self_prompt = {}, iterative = False, merge = False, max_turn =6, output_as = None, parallel = False) -> None:
13
+ self.self_prompt = self_prompt
14
+ self.use_head_prompt = True
15
+ self.connect_to(pipeline)
16
+ self.prompt_maker = prompt_maker
17
+ self.last_message = ''
18
+ self.destinations = []
19
+ self.conditions = {}
20
+ self.head_key = None
21
+ self.parallel = parallel
22
+ self.iterative = iterative
23
+ self.merge = merge
24
+ self.head_process = one_paragraph
25
+ self.max_turn = max_turn
26
+ self.multi_process = False
27
+ self.output_cond = {} # {cond : {'post_processing':post, 'end':end}}
28
+ self.count = Module.module_count
29
+ Module.module_count += 1
30
+ self.if_add_output_to_head = False
31
+ self.turns = 0
32
+ self.end = False
33
+
34
+ def __str__(self) -> str:
35
+ if self.model_type:
36
+ return f'{self.model_type}-[{self.count}]'
37
+ else:
38
+ return f'Unknown-type module-[{self.count}]'
39
+
40
+ def get_json_config(self, config):
41
+ print('get_json_config:',config)
42
+ avaliable_mapping = {
43
+ 'max turn': 'max_turn',
44
+ 'prompt': 'prompt',
45
+ 'destination': 'destination',
46
+ 'global prompt': 'head_key',
47
+ }
48
+ if config == 'prompt':
49
+ prompt_info = {
50
+ 'template': self.prompt_maker.template,
51
+ 'components': self.prompt_maker.components
52
+ }
53
+ self_info = self.self_prompt
54
+
55
+ return {
56
+ 'prompt_info': prompt_info,
57
+ 'self_info': self_info
58
+ }
59
+ elif config == 'destination':
60
+ return {
61
+ 'destination': str(self.destinations[0])
62
+ }
63
+ elif config in ['max turn','global prompt']:
64
+ config = avaliable_mapping[config]
65
+ print('getting the config:',config)
66
+ return getattr(self, config)
67
+ else:
68
+ raise NotImplementedError(f'get_json_config for {config} is not implemented')
69
+
70
+ def get_destinations(self):
71
+ return self.destinations
72
+
73
+ def update(self, config, update_info):
74
+
75
+ if config == 'prompt':
76
+ template = update_info['template']
77
+ components = update_info['components']
78
+ self_prompt = update_info['self_prompt']
79
+ import copy
80
+ # avoid changing the original prompt_maker
81
+ self.prompt_maker = copy.deepcopy(self.prompt_maker)
82
+
83
+ self.prompt_maker.update(template=template, components=components)
84
+ self.self_prompt = self_prompt
85
+
86
+ elif config == 'destination':
87
+ print('update destination:',update_info[0], 'post_processing:',update_info[1])
88
+ if update_info[1] == 'None':
89
+ self.set_target(update_info[0])
90
+ else:
91
+ self.set_target(update_info[0], post_processing=make_as(update_info[1]))
92
+
93
+ elif config == 'delete_destination':
94
+ for i, d in enumerate(self.destinations):
95
+ if str(d) == str(update_info):
96
+ self.destinations.remove(d)
97
+ del self.conditions[d]
98
+ break
99
+ elif config == 'header':
100
+ self.add_to_head(update_info, sub = True)
101
+ elif config == 'max turn':
102
+ self.max_turn = update_info
103
+ else:
104
+ raise NotImplementedError(f'update for {config} is not implemented')
105
+
106
+ def end_multi(self):
107
+ return
108
+
109
+ def set_use_head_prompt(self,use):
110
+ assert isinstance(use,bool)
111
+ self.use_head_prompt = use
112
+
113
+ def reset(self):
114
+ self.end = False
115
+ self.turns = 0
116
+
117
+ def change_to_multi_process(self,bool_value):
118
+ if bool_value:
119
+ self.last_message = []
120
+ else:
121
+ self.last_message = ''
122
+ self.multi_process = bool_value
123
+ @property
124
+ def get_use_head_prompt(self):
125
+ return self.use_head_prompt
126
+
127
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
128
+ raise NotImplementedError
129
+
130
+ def send(self):
131
+ for destination in self.destinations:
132
+ cond = self.conditions[destination]['condition']
133
+ if cond(self):
134
+ return destination
135
+ return None
136
+
137
+ def set_target(self,destination, condition = lambda self: True, post_processing = lambda x:x) -> None:
138
+ self.conditions[destination] = {'condition': condition, 'post_processing' : post_processing}
139
+ self.destinations = [destination] + self.destinations
140
+ destination.connect_to(self.pipeline)
141
+
142
+ def clear_destination(self):
143
+ self.destinations = []
144
+ self.conditions = {}
145
+
146
+ def add_output_to_head(self, outputs):
147
+ if self.if_add_output_to_head:
148
+ if not self.head_sub:
149
+ if self.head_key not in self.pipeline.head.keys():
150
+ self.pipeline.head.update({self.head_key: self.head_process(outputs)})
151
+ else:
152
+ self.pipeline.head[self.head_key] += '\n'
153
+ self.pipeline.head[self.head_key] += self.head_process(outputs)
154
+ else:
155
+ self.pipeline.head[self.head_key] = self.head_process(outputs)
156
+
157
+ def connect_to(self, pipeline = None) -> None:
158
+ self.pipeline = pipeline
159
+ if pipeline:
160
+ pipeline.module.append(self)
161
+
162
+ def output(self):
163
+ outed = False
164
+ for cond, post_and_end in self.output_cond.items():
165
+ if cond(self):
166
+ if not outed:
167
+ if not self.merge:
168
+ self.pipeline.output.append(post_and_end['post_processing'](self.last_message))
169
+ else:
170
+ self.pipeline.output.append(post_and_end['post_processing'](''.join(self.last_message)))
171
+ outed = True
172
+ if post_and_end['end']:
173
+ self.end = True
174
+
175
+ def set_output(self, cond = lambda self: True, post_processing = lambda x:x, end = True):
176
+ self.output_cond[cond] = {'post_processing': post_processing, 'end' : end}
177
+
178
+ def get_first_module(self):
179
+ return self
180
+
181
+ def add_to_head(self, datakey, sub = False, process = None):
182
+ self.if_add_output_to_head = True
183
+ self.head_key = datakey
184
+ self.head_sub = sub
185
+ if process:
186
+ self.head_process = process
187
+
188
+
189
+ def load_model(model_name_or_path,dtype = torch.float16):
190
+ from transformers import AutoModelForCausalLM, AutoTokenizer
191
+ model = AutoModelForCausalLM.from_pretrained(
192
+ model_name_or_path,
193
+ torch_dtype=dtype,
194
+ device_map='auto',
195
+ )
196
+
197
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
198
+ model.eval()
199
+ return model, tokenizer
200
+
201
+
202
+ class LLM(Module):
203
+ model_type = 'Generator'
204
+ def __init__(self, model = None, prompt_maker: Prompt =None, pipeline = None, post_processing = None, self_prompt = {}, device = 'cpu',temperature = 0.5 ,stop = None, max_turn = 6, share_model_with = None, iterative = False, auto_cite = False, output = None,merge = False, noisy = True, parallel = False, output_as ='Answer', auto_cite_from = 'docs') -> None:
205
+ super().__init__(prompt_maker,pipeline,self_prompt, iterative, merge, parallel = parallel)
206
+ self.max_turn = max_turn
207
+ if post_processing:
208
+ self.post_processing = post_processing
209
+ else:
210
+ self.post_processing = lambda x: {output_as:x}
211
+ if model:
212
+ self.model_name = model
213
+ self.stop = stop
214
+ self.multi_process = False
215
+ self.noisy = noisy
216
+ self.head_process = one_paragraph
217
+ self.auto_cite = auto_cite
218
+ if auto_cite:
219
+ self.cite_from = auto_cite_from
220
+ if model:
221
+ if 'gpt' not in model.lower():
222
+ if not share_model_with:
223
+ print('loading model...')
224
+ self.model, self.tokenizer = self.load_model(model)
225
+ else:
226
+ print('sharing model...')
227
+ self.model, self.tokenizer = share_model_with.model, share_model_with.tokenizer
228
+ self.temperature = temperature
229
+ self.device = device
230
+ else:
231
+ self.openai_key = os.getenv('OPENAI_API_KEY')
232
+ self.output_cond = {} # {cond : {'post_processing':post, 'end':end}}
233
+ self.if_add_output_to_head = False
234
+
235
+ self.token_used = 0
236
+
237
+ def reset(self):
238
+ self.end = False
239
+ self.turns = 0
240
+ self.token_used = 0
241
+
242
+
243
+ def __str__(self) -> str:
244
+ if self.model_name:
245
+ return f'{self.model_name}-[{self.count}]'
246
+ else:
247
+ return 'unknown model'
248
+
249
+ def __repr__(self) -> str:
250
+ return (f'{self.prompt_maker}\n|\n|\nV\n{self}\n|\n|\nV\n'+ '/'.join([str(des) for des in self.destinations]+['output']))
251
+
252
+ def load_model(self, model_name_or_path,dtype = torch.float16):
253
+ from transformers import AutoModelForCausalLM, AutoTokenizer
254
+ model = AutoModelForCausalLM.from_pretrained(
255
+ model_name_or_path,
256
+ torch_dtype=dtype,
257
+ device_map='auto',
258
+ )
259
+
260
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
261
+ model.eval()
262
+ return model, tokenizer
263
+
264
+ def set_cite(self,key):
265
+ self.cite_from = key
266
+ self.auto_cite = True
267
+
268
+ def generate_content(self, prompt):
269
+ if 'gpt' in self.model_name.lower():
270
+ import openai
271
+ openai.api_key = self.openai_key
272
+ prompt = [
273
+ {'role': 'system',
274
+ 'content': "You are a good helper who follow the instructions"},
275
+ {'role': 'user', 'content': prompt}
276
+ ]
277
+ response = openai.ChatCompletion.create(
278
+ model=self.model_name,
279
+ messages=prompt,
280
+ max_tokens=500,
281
+ stop = self.stop
282
+ )
283
+ self.token_used += response['usage']['completion_tokens'] + response['usage']['prompt_tokens']
284
+ return response['choices'][0]['message']['content']
285
+
286
+ else:
287
+ inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
288
+ stop = [] if self.stop is None else self.stop
289
+
290
+ outputs = self.model.generate(
291
+ **inputs,
292
+ do_sample = True,
293
+ max_new_tokens = 200,
294
+ temperature = self.temperature
295
+ )
296
+ self.token_used += len(outputs[0])
297
+
298
+ outputs = self.tokenizer.decode(outputs[0][inputs['input_ids'].size(1):], skip_special_tokens=True)
299
+ return one_paragraph(outputs)
300
+ print(outputs)
301
+
302
+
303
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
304
+ if self.use_head_prompt:
305
+ #print(head_prompt,self.self_prompt,dynamic_prompt)
306
+ prompt = self.prompt_maker(head_prompt,self.self_prompt,dynamic_prompt)
307
+ else:
308
+ prompt = self.prompt_maker(self.self_prompt,dynamic_prompt)
309
+ if self.noisy:
310
+ print(f'prompt to {str(self)}:\n',prompt,'\n\n')
311
+ self.turns += 1
312
+
313
+ outputs = self.generate_content(prompt)
314
+ #print('DEBUG:',outputs)
315
+ if self.noisy:
316
+ print('OUTPUT:')
317
+ print(outputs)
318
+ if self.auto_cite:
319
+ outputs = self.cite_from_prompt({**head_prompt,**self.self_prompt,**dynamic_prompt},outputs)
320
+ if self.multi_process:
321
+ self.last_message.append(outputs)
322
+ else:
323
+ self.last_message = outputs
324
+
325
+
326
+ self.add_output_to_head(outputs)
327
+
328
+ destination = self.send()
329
+
330
+ if self.turns > self.max_turn:
331
+ self.end = True
332
+ if destination in self.conditions:
333
+ return self.conditions[destination]['post_processing'](outputs)
334
+ else:
335
+ return self.post_processing(outputs)
336
+
337
+ def add_output_to_head(self, outputs):
338
+ if self.if_add_output_to_head:
339
+ if not self.head_sub:
340
+ if self.head_key not in self.pipeline.head.keys():
341
+ self.pipeline.head.update({self.head_key: self.head_process(outputs)})
342
+ else:
343
+ self.pipeline.head[self.head_key] += '\n'
344
+ self.pipeline.head[self.head_key] += self.head_process(outputs)
345
+ else:
346
+ self.pipeline.head[self.head_key] = self.head_process(outputs)
347
+
348
+ def output(self):
349
+ outed = False
350
+ for cond, post_and_end in self.output_cond.items():
351
+ if cond(self):
352
+ if not outed:
353
+ if not self.merge and not self.iterative:
354
+ self.pipeline.output.append(post_and_end['post_processing'](self.last_message))
355
+ else:
356
+ self.pipeline.output.append(post_and_end['post_processing'](' '.join(self.last_message)))
357
+ outed = True
358
+ if post_and_end['end']:
359
+ self.end = True
360
+
361
+ def set_output(self, cond = lambda self: True, post_processing = lambda x:x, end = True):
362
+ self.output_cond[cond] = {'post_processing': post_processing, 'end' : end}
363
+
364
+
365
+ def cite_from_prompt(self,prompt_dict,input):
366
+ input = first_sentence(input)
367
+ cite_docs = prompt_dict[self.cite_from]
368
+ refs = re.findall(r'\[\d+\]', cite_docs)
369
+ pattern = r'([.!?])\s*$'
370
+ if refs:
371
+ cite = ''.join(refs)
372
+ else:
373
+ cite = ''
374
+ output = re.sub(pattern, rf' {cite}\1 ', input)
375
+ if cite not in output:
376
+ output += cite
377
+ return output
378
+ def add_to_head(self, datakey, sub = False, process = None):
379
+ self.if_add_output_to_head = True
380
+ self.head_key = datakey
381
+ self.head_sub = sub
382
+ if process:
383
+ self.head_process = process
384
+
385
+
386
+
387
+ class TestLLM(LLM):
388
+ def __init__(self, model='gpt-4', prompt_maker: Prompt = None, pipeline=None, post_processing=lambda x: x, self_prompt={}, device='cpu', temperature=0.5, stop=None, max_turn=6,share_model_with = None, iterative= False, ans = None) -> None:
389
+ super().__init__(model,prompt_maker,pipeline,self_prompt=self_prompt,share_model_with=share_model_with,iterative=iterative)
390
+ self.max_turn = max_turn
391
+ self.post_processing = post_processing
392
+ self.model_name = model
393
+ self.last_message = ''
394
+ self.stop = stop
395
+ self.output_cond = {} # {cond : {'post_processing':post, 'end':end}}
396
+ self.if_add_output_to_head = False
397
+
398
+ self.token_used = 0
399
+ self.ans = 'Strain[1], turns:, heat[2][4]. Sent2[5]. Sent3.\n\n rdd' if not ans else ans
400
+ def generate_content(self, prompt):
401
+ return self.ans
402
+
403
+
404
+ class AutoAISLLM(LLM):
405
+ def __init__(self, model=None, prompt_maker: Prompt = None, pipeline=None, post_processing=None, self_prompt={}, device='cpu', temperature=0.5, stop=None, max_turn=6, share_model_with=None, iterative=False, auto_cite=False, output=None, merge=False, noisy=False, output_as='Answer') -> None:
406
+ super().__init__(model, prompt_maker, pipeline, post_processing, self_prompt, device, temperature, stop, max_turn, share_model_with, iterative, auto_cite, output, merge, noisy, output_as)
407
+
408
+ self.prompt_maker = Prompt('<INST><premise><claim>\n Answer: ',components={
409
+ 'INST':'{INST}\n\n',
410
+ 'premise':'Premise: {premise}\n\n',
411
+ 'claim':'Claim: {claim}\n',
412
+ })
413
+ self.self_prompt={'INST': 'In this task, you will be presented a premise and a claim. If the premise entails the claim, output "1", otherwise output "1". Your answer should only contains one number without any other letters and punctuations.'}
414
+
415
+ def generate(self, premise, claim):
416
+ dict_answer = super().generate({'premise':premise,'claim':claim})
417
+ return dict_answer.get('Answer')
418
+
419
+
420
+
421
+ if __name__ == '__main__':
422
+ prompt = Prompt(template='<INST><Question><Docs><feedback><Answer>',components={'INST':'{INST}\n\n',
423
+ 'Question':'Question:{Question}\n\n',
424
+ 'Docs':'{Docs}\n',
425
+ 'feedback':'Here is the feed back of your last response:{feedback}\n',
426
+ 'Answer':'Here is answer and you have to give feedback:{Answer}'})
427
+ m = LLM('gpt')
citekit/cite_modules/Retrieve.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import csv
3
+ import json
4
+ import os
5
+ import time
6
+ import pickle
7
+
8
+ import numpy as np
9
+ import torch
10
+ from tqdm import tqdm
11
+ from rank_bm25 import BM25Okapi
12
+ from sentence_transformers import SentenceTransformer
13
+
14
+ def gtr_build_index(encoder, docs):
15
+ with torch.inference_mode():
16
+ embs = encoder.encode(docs, show_progress_bar=True, normalize_embeddings=True)
17
+ embs = embs.astype("float16")
18
+
19
+ GTR_EMB = os.environ.get("GTR_EMB")
20
+ with open(GTR_EMB, "wb") as f:
21
+ pickle.dump(embs, f)
22
+ return embs
23
+
24
+
25
+ class DPRRetriever:
26
+ def __init__(self, DPR_WIKI_TSV, GTR_EMB = None, emb_model = "sentence-transformers/gtr-t5-xxl") -> None:
27
+ device = "cuda" if torch.cuda.is_available() else "cpu"
28
+ self.device = device
29
+ self.encoder = SentenceTransformer(emb_model, device = device)
30
+ self.docs = []
31
+ print("loading wikipedia file...")
32
+ with open(DPR_WIKI_TSV) as f:
33
+ reader = csv.reader(f, delimiter="\t")
34
+ for i, row in enumerate(reader):
35
+ if i == 0:
36
+ continue
37
+ self.docs.append(row[2] + "\n" + row[1])
38
+ if not GTR_EMB:
39
+ print("gtr embeddings not found, building...")
40
+ embs = gtr_build_index(self.encoder, self.docs)
41
+ else:
42
+ print("gtr embeddings found, loading...")
43
+ with open(GTR_EMB, "rb") as f:
44
+ embs = pickle.load(f)
45
+
46
+ self.gtr_emb = torch.tensor(embs, dtype=torch.float16, device=device)
47
+
48
+ def retrieve(self, question, topk):
49
+ with torch.inference_mode():
50
+ query = self.encoder.encode(question, batch_size=4, show_progress_bar=True, normalize_embeddings=True)
51
+ query = torch.tensor(query, dtype=torch.float16, device=self.device)
52
+ query = query.to(self.device)
53
+ scores = torch.matmul(self.gtr_emb, query)
54
+ score, idx = torch.topk(scores, topk)
55
+ ret = []
56
+ for i in range(idx.size(0)):
57
+ title, text = self.docs[idx[i].item()].split("\n")
58
+ ret.append({"id": str(idx[i].item() + 1), "title": title, "text": text, "score": score[i].item()})
59
+
60
+ return ret
61
+
62
+ def __repr__(self) -> str:
63
+ return 'DPR Retriever'
64
+
65
+ def __str__(self) -> str:
66
+ return repr(self)
67
+
68
+ class BM25Retriever:
69
+ def __init__(self, DPR_WIKI_TSV):
70
+ self.docs = []
71
+ self.tokenized_docs = []
72
+ print("loading wikipedia file...")
73
+ with open(DPR_WIKI_TSV) as f:
74
+ reader = csv.reader(f, delimiter="\t")
75
+ for i, row in enumerate(reader):
76
+ if i == 0:
77
+ continue
78
+ self.docs.append(row[2] + "\n" + row[1])
79
+ self.tokenized_docs.append((row[2] + " " + row[1]).split())
80
+
81
+ print("BM25 index building...")
82
+ self.bm25 = BM25Okapi(self.tokenized_docs)
83
+
84
+ def retrieve(self, question, topk):
85
+ query = question.split()
86
+ scores = self.bm25.get_scores(query)
87
+ topk_indices = scores.argsort()[-topk:][::-1]
88
+ ret = []
89
+ for idx in topk_indices:
90
+ title, text = self.docs[idx].split("\n", 1)
91
+ ret.append({"id": str(idx + 1), "title": title, "text": text, "score": scores[idx]})
92
+
93
+ return ret
94
+ def __repr__(self) -> str:
95
+ return 'BM25 Retriever'
96
+
97
+ def __str__(self) -> str:
98
+ return repr(self)
99
+
citekit/cite_modules/__pycache__/LLM.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
citekit/cite_modules/__pycache__/LLM.cpython-312.pyc ADDED
Binary file (22.4 kB). View file
 
citekit/cite_modules/__pycache__/Retrieve.cpython-310.pyc ADDED
Binary file (3.95 kB). View file
 
citekit/cite_modules/__pycache__/Retrieve.cpython-312.pyc ADDED
Binary file (6.75 kB). View file
 
citekit/cite_modules/__pycache__/augment_model.cpython-310.pyc ADDED
Binary file (28.9 kB). View file
 
citekit/cite_modules/__pycache__/augment_model.cpython-312.pyc ADDED
Binary file (39.6 kB). View file
 
citekit/cite_modules/augment_model.py ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from citekit.cite_modules.LLM import Module,LLM
2
+ from citekit.cite_modules.Retrieve import DPRRetriever
3
+ from citekit.evaluator.evaluator import _run_nli_autoais, Evaluator
4
+ from citekit.prompt.prompt import Prompt
5
+ from citekit.utils.utils import one_paragraph, make_as
6
+ from sentence_transformers import SentenceTransformer
7
+ import re
8
+ import random
9
+
10
+
11
+ class Retriever(Module):
12
+ model_type = 'retriever'
13
+ def __init__(self, documents = None ,retrieve_by = 'index', prompt_maker = None, pipeline = None, post_processing = lambda input, output: {'RetrievedDocs':output}, self_prompt = {},topk = 3,add_id = True, merge = False, tsv_path = 'None', emb_path = 'None', retrieve_from_data = True, parallel = False) -> None:
14
+ super().__init__(prompt_maker,pipeline,self_prompt,merge=merge, parallel=parallel)
15
+ self.retrieve_by = retrieve_by
16
+ self.use_head_prompt = False
17
+ self.dataset_documents = None
18
+ self.documents = None
19
+ self.default_doc_key = 'docs'
20
+ self.retrieve_from_data = retrieve_from_data
21
+ if not documents:
22
+ self.documents = self.pipeline.doc_cache
23
+ else:
24
+ self.dataset_documents = documents
25
+ self.post_processing = post_processing
26
+ self.if_add_output_to_head = False
27
+ self.topk = topk
28
+ self.add_id = add_id
29
+ if retrieve_by =='bm25':
30
+ self.bm25_module_loaded = False
31
+ from rank_bm25 import BM25Okapi
32
+ import nltk
33
+ nltk.download('punkt')
34
+ from nltk.tokenize import word_tokenize
35
+ self.word_tokenize = word_tokenize
36
+ self.BM25Okapi = BM25Okapi
37
+ self.bm25_module_loaded = True
38
+ elif retrieve_by == 'dpr':
39
+ self.dpr_retriever = DPRRetriever(DPR_WIKI_TSV=tsv_path,
40
+ GTR_EMB=emb_path)
41
+
42
+ def generate(self,head_prompt: dict = {}, dynamic_prompt: dict = {}):
43
+ index = self.pipeline.data_index
44
+ if self.dataset_documents:
45
+ if isinstance(self.dataset_documents[0], list):
46
+ # Each data has a document
47
+ self.documents = self.dataset_documents[index]
48
+ else:
49
+ self.documents = self.dataset_documents
50
+ else:
51
+ if not self.retrieve_from_data:
52
+ self.documents = self.pipeline.doc_cache.show_docs()
53
+ else:
54
+ def _stringtfy(doc):
55
+ if isinstance(doc, str):
56
+ return doc
57
+ return f"({doc['title']}) {doc['text']}"
58
+ self.documents = list(map(_stringtfy, self.pipeline.current_data[self.default_doc_key]))
59
+ # query
60
+ if self.use_head_prompt:
61
+ prompt = self.prompt_maker(head_prompt,self.self_prompt,dynamic_prompt)
62
+ else:
63
+ prompt = self.prompt_maker(self.self_prompt,dynamic_prompt)
64
+
65
+ retrieved_docs = []
66
+ if self.retrieve_by == 'index':
67
+ # query : Document [1][2]
68
+ indice = [int(r[1:]) - 1 for r in re.findall(r"\[\d+",prompt)]
69
+ for index in indice:
70
+ retrieved_docs.append(self.documents[index])
71
+ if len(retrieved_docs) > self.topk:
72
+ retrieved_docs = retrieved_docs[:self.topk]
73
+ elif self.retrieve_by =='bm25':
74
+ # natural language query
75
+ tokenized_docs = [self.word_tokenize(doc.lower()) for doc in self.documents]
76
+ bm25 = self.BM25Okapi(tokenized_docs)
77
+ tokenized_query = self.word_tokenize(prompt.lower())
78
+ doc_scores = bm25.get_scores(tokenized_query)
79
+ if self.topk > len(doc_scores):
80
+ self.topk = len(doc_scores) - 1
81
+ top_k_idx = sorted(range(len(doc_scores)), key=lambda i: doc_scores[i], reverse=True)[:self.topk]
82
+ retrieved_docs = [self.documents[index] for index in top_k_idx]
83
+ retrieved_docs_new = []
84
+ for re_doc in retrieved_docs:
85
+ self.pipeline.doc_cache.add_doc(re_doc,self.add_id)
86
+ retrieved_docs_new.append(self.pipeline.doc_cache.get_last())
87
+ retrieved_docs = retrieved_docs_new
88
+ #raise NotImplementedError
89
+
90
+
91
+ elif self.retrieve_by =='gtr':
92
+ docs_dict = self.dpr_retriever.retrieve(prompt,topk=self.topk)
93
+ retrieved_docs = [f"({d['title']}) {d['text']}" for d in docs_dict]
94
+ retrieved_docs_new = []
95
+ for re_doc in retrieved_docs:
96
+ self.pipeline.doc_cache.add_doc(re_doc,self.add_id)
97
+ retrieved_docs_new.append(self.pipeline.doc_cache.get_last())
98
+ retrieved_docs = retrieved_docs_new
99
+
100
+ retrieved_docs_prompt = '\n'.join(retrieved_docs)
101
+ destination = self.send()
102
+ if self.multi_process:
103
+ self.last_message.append(retrieved_docs_prompt)
104
+ else:
105
+ self.last_message = retrieved_docs_prompt
106
+ #print(self.last_message)
107
+
108
+ if self.if_add_output_to_head:
109
+ self.pipeline.head.update({self.head_key:retrieved_docs_prompt})
110
+ if destination in self.conditions:
111
+ try:
112
+ return self.conditions[destination]['post_processing'](prompt,retrieved_docs_prompt)
113
+ except:
114
+ return self.conditions[destination]['post_processing'](retrieved_docs_prompt)
115
+
116
+ else:
117
+ return retrieved_docs_prompt
118
+ raise NotImplementedError
119
+
120
+
121
+ class EvalModule(Module, Evaluator):
122
+ model_type = 'evaluator'
123
+ def __init__(self, prompt_maker = None, pipeline=None, self_prompt={},criteria = None, iterative = False, max_turn =6 ,parallel = False) -> None:
124
+ Module.__init__(self,prompt_maker, pipeline, self_prompt,iterative=iterative,max_turn=max_turn, parallel=parallel)
125
+ Evaluator.__init__(self,criteria,pipeline)
126
+
127
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
128
+ result = {}
129
+ p_data = {**head_prompt, **self.self_prompt,**dynamic_prompt}
130
+ for criteria, get_data in self.get_data.items():
131
+ data_dict = {}
132
+ for k, v in get_data.items():
133
+ if v == 'doc_cache':
134
+ data_dict[k] = self.pipeline.doc_cache.show_docs()
135
+ else:
136
+ if v in p_data.keys():
137
+ data_dict[k] = p_data[v]
138
+ else:
139
+ data_dict[k] = self.pipeline.current_data[v]
140
+ eval_func = Evaluator.eval_criteria[criteria]
141
+ data = [data_dict]
142
+ result[criteria] = eval_func(data)
143
+
144
+ if self.multi_process:
145
+ self.last_message.append(result)
146
+ else:
147
+ self.last_message = result
148
+ destination = self.send()
149
+ if destination in self.conditions:
150
+ return self.conditions[destination]['post_processing'](result)
151
+ else:
152
+ return result
153
+
154
+
155
+ class CitationSimplyfier(Module):
156
+ '''
157
+ Simplify the citation of the 'answer' in prompt.
158
+ Argument can be changed to fit into different name of key in prompts
159
+ By Defaut, the simplifier simplifies the 'answer' and output the sring with citation simplified.
160
+ '''
161
+ model_type = 'simplifier'
162
+ def __init__(self, prompt_maker = None, pipeline=None, self_prompt={}, criteria = None, key = 'answer', test = False, allow_empty = True) -> None:
163
+ Module.__init__(self,prompt_maker, pipeline, self_prompt)
164
+ if not test:
165
+ self.entail = _run_nli_autoais
166
+ else:
167
+ self.entail = lambda p,c : random.randint(0,1)
168
+ self.docs = ['0'] * 100
169
+ self.key = key
170
+ self.allow_empty = allow_empty
171
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}) -> str:
172
+ docs = self.pipeline.doc_cache
173
+ prompt = {**head_prompt, **dynamic_prompt}
174
+ answer = prompt[self.key]
175
+
176
+ refs = re.findall(r'\[\d+\]', answer)
177
+ last_ref_index = None
178
+ for match in re.finditer(r'\[\d+\]', answer):
179
+ last_ref_index = match.end()
180
+
181
+ if not refs:
182
+ return answer
183
+
184
+ refs_str = ''.join(refs)
185
+
186
+ def simplify(sentence, refs, docs):
187
+ ref_numbers = [int(ref.strip('[]')) for ref in refs]
188
+
189
+ docs_combined = ''.join(docs[ref - 1] for ref in ref_numbers if ref - 1 < len(docs))
190
+
191
+ if not self.entail(docs_combined, sentence):
192
+ if self.allow_empty:
193
+ return ''
194
+ return ''.join(refs)
195
+
196
+ if len(ref_numbers) == 1:
197
+ return ''.join(f'[{num}]' for num in ref_numbers)
198
+
199
+ def remove_and_test(ref_numbers):
200
+ for i, ref in enumerate(ref_numbers):
201
+ new_ref_numbers = ref_numbers[:i] + ref_numbers[i+1:]
202
+ new_docs_combined = ''.join(docs[r - 1] for r in new_ref_numbers if r - 1 < len(docs))
203
+ if self.entail(new_docs_combined, sentence):
204
+ if len(new_ref_numbers) == 1:
205
+ return new_ref_numbers
206
+ return remove_and_test(new_ref_numbers)
207
+ return ref_numbers
208
+
209
+ simplified_ref_numbers = remove_and_test(ref_numbers)
210
+
211
+ simplified_refs = ''.join(f'[{num}]' for num in simplified_ref_numbers)
212
+ return simplified_refs
213
+
214
+ simplified_refs = simplify(answer,refs,docs)
215
+
216
+ sentence_without_refs = re.sub(r'\[\d+\]', '', answer)
217
+
218
+ if last_ref_index is not None:
219
+ output = sentence_without_refs[:last_ref_index - len(refs_str)] + simplified_refs + sentence_without_refs[last_ref_index - len(refs_str):]
220
+ else:
221
+ output = sentence_without_refs + simplified_refs
222
+
223
+ if not simplified_refs and self.allow_empty:
224
+ output = ''
225
+
226
+
227
+ if self.multi_process:
228
+ self.last_message.append(output)
229
+ else:
230
+ self.last_message = output
231
+
232
+ return output
233
+
234
+
235
+ class Verifier(Module):
236
+
237
+ '''
238
+ Verifier is currently only used for single sentence/single target answer, not for parallel or iterative answer.
239
+ Verifier will return dynamic prompt, not like other modules returning output. It is a judger only to decide the target module.
240
+ By default, the verifoer verifies whether the documents support the answer.
241
+ '''
242
+ model_type = 'verifier'
243
+ def __init__(self, prompt_maker = None, pipeline=None, self_prompt={}, criteria = None, key = 'answer', test = False) -> None:
244
+ Module.__init__(self,prompt_maker, pipeline, self_prompt)
245
+ if not test:
246
+ self.entail = _run_nli_autoais
247
+ else:
248
+ self.entail = lambda p,c : random.randint(0,1)
249
+ self.docs = ['s'] * 100
250
+ self.key = key
251
+ self.test = test
252
+
253
+ # Overcite this function to
254
+ def verifier_judge(self,**kargs):
255
+ docs = self.pipeline.doc_cache
256
+ answer = kargs[self.key]
257
+ refs = re.findall(r'\[\d+\]', answer)
258
+ if not refs:
259
+ return False
260
+ ref_numbers = [int(ref.strip('[]')) for ref in refs]
261
+
262
+ docs_combined = ''.join(docs[ref - 1] for ref in ref_numbers if ref - 1 < len(docs))
263
+ return bool(self.entail(docs_combined, re.sub(r'\[\d+\]', '', answer)))
264
+
265
+
266
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
267
+ prompt = {**head_prompt, **dynamic_prompt}
268
+ out = self.verifier_judge(**prompt)
269
+
270
+ self.last_message = out
271
+
272
+ self.turns += 1
273
+ return dynamic_prompt
274
+
275
+
276
+ class AugmentCluster():
277
+ def __init__(self, module_list = []) -> None:
278
+ self.module_list = module_list
279
+ module_count = len(module_list)
280
+ for i in range(module_count - 1):
281
+ assert isinstance(module_list[i],LLM) and isinstance(module_list[i+1],LLM)
282
+ module_list[i].set_target(module_list[i+1], post_processing = module_list[i].post_processing)
283
+
284
+ def get_first_module(self):
285
+ return self.module_list[0]
286
+
287
+ def get_destinations(self):
288
+ return self.module_list[-1].get_destinations()
289
+
290
+ def reset(self):
291
+ for module in self.module_list:
292
+ module.reset()
293
+
294
+ def update(self, config, update_info):
295
+ print('updating the AugmentCluster', update_info)
296
+ self.module_list[-1].update(config, update_info)
297
+
298
+ def __str__(self):
299
+ print('getting str of the cluster', ' -> '.join([str(module) for module in self.module_list]))
300
+ return ' -> '.join([str(module) for module in self.module_list])
301
+
302
+ def set_target(self,destination, condition = lambda self: True, post_processing = lambda x: x) -> None:
303
+ self.module_list[-1].set_target(destination, condition, post_processing)
304
+
305
+ def set_output(self, cond = lambda self: True, post_processing = lambda x:x, end = True):
306
+ self.module_list[-1].set_output(cond, post_processing, end)
307
+
308
+ def connect_to(self, pipeline = None) -> None:
309
+ for module in self.module_list:
310
+ module.connect_to(pipeline)
311
+ pipeline.stored_clusters.append(self)
312
+
313
+
314
+ class Attribute_post_select(LLM):
315
+ noisy = False
316
+ model_name = 'function'
317
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
318
+ print('post_select', head_prompt, dynamic_prompt)
319
+ docs = head_prompt['docs']
320
+ ans_docs = one_paragraph(dynamic_prompt['span']).split("\n")
321
+ spans = [ans_doc[14:].split("<SPAN_DELIM>") for ans_doc in ans_docs]
322
+ msg = ''
323
+ span_list = {}
324
+ doc_map = {}
325
+ j = 1
326
+ i = 1
327
+ for doc in spans:
328
+ if doc!= [] :
329
+ span_list[f'{i}'] = []
330
+ msg += f'Document [{i}]:\n'
331
+ for span in doc:
332
+ if len(span)> 3:
333
+ msg += f'{j}. {span}\n'
334
+ span_list[f'{i}'].append(f'{j}. {span.strip()}')
335
+ doc_map[str(j)] = str(i)
336
+ j+=1
337
+ docs = docs.replace(span.strip(), f'<highlight_start>{span.strip()}<highlight_end>')
338
+ i+=1
339
+ self.pipeline.head['doc_map'] = doc_map
340
+ self.pipeline.head['docs'] = docs
341
+ self.pipeline.head['span'] = msg
342
+ self.pipeline.head['span_list'] = span_list
343
+ return {'span_list': Prompt.UNABLE,'doc_map': Prompt.UNABLE}
344
+
345
+ class Attribute_post_cluster(LLM):
346
+ noisy = False
347
+ model_name = 'function'
348
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
349
+ print('f1', head_prompt, dynamic_prompt)
350
+ span_ls = head_prompt['span_list']
351
+ doc_map = head_prompt['doc_map']
352
+ span_list = [item for sublist in head_prompt['span_list'].values() for item in sublist]
353
+ clusters = eval(one_paragraph(dynamic_prompt['cls'].strip()))
354
+ self.pipeline.head['clusters'] = clusters
355
+ def _form(cls):
356
+ text = ''
357
+ doc_list = cls['cluster']
358
+ for doc_num in span_ls.keys():
359
+ pieces = [str(i) for i in doc_list if doc_map.get(str(i),'None') == doc_num]
360
+ if pieces:
361
+ text += f'Document [{doc_num}]: \n' + '\n'.join([span_list[int(num)-1] for num in pieces]) + '\n'
362
+
363
+ return(text)
364
+ #print([{'span': _form(cls)} for cls in clusters])
365
+ return [{'span': _form(cls),'span_list': Prompt.UNABLE,'doc_map': Prompt.UNABLE,'clusters':Prompt.UNABLE,'docs':Prompt.UNABLE} for cls in clusters if _form(cls)]
366
+
367
+ class Ranker(EvalModule):
368
+
369
+ def __init__(self, prompt_maker=None, pipeline=None, self_prompt={}, criteria=None,iterative = True, max_turn = 3, parallel = False, post_processing = lambda x : x, fixed_turn = None) -> None:
370
+ super().__init__(prompt_maker, pipeline, self_prompt, criteria, iterative = iterative, max_turn = max_turn, parallel = parallel)
371
+ self.compare = []
372
+ self.post_processing = post_processing
373
+ if fixed_turn:
374
+ self.fixed_turn = fixed_turn
375
+ else:
376
+ self.fixed_turn = max_turn
377
+ def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
378
+
379
+ self.turns += 1
380
+ result = {}
381
+ p_data = {**head_prompt, **self.self_prompt,**dynamic_prompt}
382
+ for criteria, get_data in self.get_data.items():
383
+ data_dict = {}
384
+ for k, v in get_data.items():
385
+ if v == 'doc_cache':
386
+ data_dict[k] = self.pipeline.doc_cache.show_docs()
387
+ else:
388
+ if v in p_data.keys():
389
+ data_dict[k] = p_data[v]
390
+ else:
391
+ data_dict[k] = self.pipeline.current_data[v]
392
+ eval_func = self.eval_criteria[criteria]
393
+ data = [data_dict]
394
+ result[criteria] = eval_func(data)
395
+
396
+ result = sum([value for key, value in result.items()])
397
+ self.compare.append((result,dynamic_prompt))
398
+ output = max(self.compare,key = lambda x:x[0])[1]
399
+ destination = self.send()
400
+ self.last_message = output
401
+ if len(self.compare) == self.fixed_turn:
402
+ self.compare = []
403
+ if destination in self.conditions:
404
+ return self.conditions[destination]['post_processing'](output)
405
+ else:
406
+ return self.post_processing(output)
407
+
408
+ return {}
409
+
410
+ def end_multi(self):
411
+ self.compare = []
412
+ return super().end_multi()
413
+
414
+
415
+
416
+ class AttributingModule(AugmentCluster):
417
+ model_type = 'attributer'
418
+ demo ={
419
+ "selection_instruction":"In this task, you are presented with several documents, which need to be summarized. As an intermediate step, you need to identify salient content within the documents. For each document, copy verbatim the salient spans, and use <SPAN_DELIM> as a delimiter between each consecutive span. IMPORTANT: The output must be of the format Document [<DOC_ID>]: <SPAN_DELIM>-delimited consecutive salient spans. IMPORTANT: Each salient content must be a single consecutive verbatim span from the corresponding passages. IMPORTANT: make sure the total number of copied words (from all documents) is around 200 words, and not more than 900.",
420
+ "selection_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. Cherrapunji has often been credited as being the wettest place on Earth, but for now nearby Mawsynram currently holds that distinction. Cherrapunji still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. Cherrapunji has often been credited as being the wettest place on Earth, but for now nearby Mawsynram currently holds that distinction. Cherrapunji still holds the all-time record for the most rainfall\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. Mawsynram receives one of the highest rainfalls in India. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, but that claim is disputed by Lloró, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 and López de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25° 18′\" \n\nAnswer: \nDocument [1]: <SPAN_DELIM>Cherrapunji has often been credited as being the wettest place on Earth<SPAN_DELIM> still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<SPAN_DELIM> \nDocument [2]: <SPAN_DELIM>Cherrapunji has often been credited as being the wettest place on Earth<SPAN_DELIM>still holds the all-time record for the most rainfall<SPAN_DELIM> \nDocument [3]: <SPAN_DELIM>Mawsynram receives one of the highest rainfalls in India <SPAN_DELIM> but that claim is disputed by Lloró, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 <SPAN_DELIM> López de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. <SPAN_DELIM>",
421
+ "clustering_instruction":"In this task, you are presented with several passages, where some parts are \"highlighted\" (namely, there are <highlight_start> and <highlight_end> tokens before and after each such span). The goal is to fuse all those highlights into a single summary. As an intermediate step, you need to cluster highlights that can be merged into a sentence (namely, each cluster will be later merged into one sentence). Make sure the clusters are in the same order you would then write the corresponding summary sentences. IMORTANT: make sure there are at most 3 clusters, and no more than 3 highlights per cluster. IMPORTANT: The output must be of the format [\"cluster\":[comma-delimited highlights indices]]",
422
+ "clustering_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. Cherrapunji <highlight_start>still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<highlight_end>, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. <highlight_start>Cherrapunji still holds the all-time record for the most rainfall<highlight_end>\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. <highlight_start>Mawsynram receives one of the highest rainfalls in India<highlight_end>. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, <highlight_start>but that claim is disputed by Lloró, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989<highlight_end> and <highlight_start>López de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012.<highlight_end> According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25° 18′\" \n\nThe highlighted spans are: \nDocument [1]: 1. Cherrapunji has often been credited as being the wettest place on Earth \n2. still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861 \nDocument [2]: \n3. Cherrapunji has often been credited as being the wettest place on Earth \n4. still holds the all-time record for the most rainfall \nDocument [3]: \n5. Mawsynram receives one of the highest rainfalls in India \n6. but that claim is disputed by Lloró, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 \n7. López de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. \n\nAnswer: \nThe highlighted spans are clustered as follows: \n[{\"cluster\":[6,7]}, {\"cluster\":[5]},{\"cluster\":[1,2]}]",
423
+ "gen_instruction":"In this task, you are presented with several passages, where some parts are \"highlighted\" (namely, there are <highlight_start> and <highlight_end> tokens before and after each such span). You may also be presented with a prefix of the answer. You job is to generate the next sentence of the answer, that covers all and only the \"highlighted\" spans. Make sure it connects well with the prefix(if eixists), and that it covers all and only the \"highlighted\" spans. Always cite for any factual claim. When citing several search results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of the documents.",
424
+ "gen_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. Cherrapunji <highlight_start>still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<highlight_end>, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. <highlight_start>Cherrapunji still holds the all-time record for the most rainfall<highlight_end>\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. <highlight_start>Mawsynram receives one of the highest rainfalls in India<highlight_end>. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, <highlight_start>but that claim is disputed by Lloró, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989<highlight_end> and <highlight_start>López de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012.<highlight_end> According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25° 18′\" \n\nPrefix: Several places on Earth claim to be the most rainy, such as Lloró, Colombia, which reported an average annual rainfall of 12,717 mm between 1952 and 1989, and López de Micay, Colombia, which reported an annual 12,892 mm between 1960 and 2012 [3]. \n\nThe highlighted spans are: \nDocument [3]: \n5. Mawsynram receives one of the highest rainfalls in India \n\nAnswer: \nThe next sentence is: \nHowever, the official record is held by Mawsynram, India with an average annual rainfall of 11,872 mm [3]."
425
+ }
426
+ PARA_SEP = '\n\n'
427
+ selection_shot = demo['selection_instruction'] + PARA_SEP + demo['selection_shot'] + PARA_SEP
428
+ cls_shot = demo['clustering_instruction'] + PARA_SEP + demo['clustering_shot'] + PARA_SEP
429
+ gen_shot = demo['gen_instruction'] + PARA_SEP + demo['gen_shot'] + PARA_SEP
430
+ prompt = Prompt(template='<shot><INST><question><docs><prefix><span><add>',
431
+ components={'INST':'{INST}\n\n',
432
+ 'shot':'{shot}',
433
+ 'question':'Question:{question}\n\n',
434
+ 'docs':'{docs}\n',
435
+ 'span':'The highlighted spans are: \n{span}\n\n',
436
+ 'prefix':'Prefix: {prefix}\n\n',
437
+ 'add':'Answer: \n{add}'
438
+ })
439
+ def __init__(self, model) -> None:
440
+ module_list = []
441
+ select = LLM(model = model, prompt_maker = self.prompt, self_prompt={'INST':self.demo['selection_instruction'],'shot':self.selection_shot,'add':''}, post_processing=make_as('span'),noisy= False)
442
+ post_select = Attribute_post_select()
443
+ clustering = LLM(model = model, prompt_maker = self.prompt, self_prompt={'INST':self.demo['clustering_instruction'],'shot':self.cls_shot, 'add':'The highlighted spans are clustered as follows:'},share_model_with=select, post_processing=make_as('cls'),noisy=False)
444
+ post_cls = Attribute_post_cluster()
445
+ module_list = [select,post_select,clustering,post_cls]
446
+ super().__init__(module_list)
447
+
448
+ MODEL_TYPE_MAPPING = {
449
+ 'retrieve': Retriever,
450
+ 'eval': EvalModule,
451
+ 'simplify': CitationSimplyfier,
452
+ 'verify': Verifier,
453
+ 'rank': Ranker,
454
+ 'attributing': AttributingModule
455
+ }
citekit/evaluator/__init__.py ADDED
File without changes
citekit/evaluator/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (162 Bytes). View file
 
citekit/evaluator/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (164 Bytes). View file
 
citekit/evaluator/__pycache__/evaluator.cpython-310.pyc ADDED
Binary file (27.3 kB). View file
 
citekit/evaluator/__pycache__/evaluator.cpython-312.pyc ADDED
Binary file (45.7 kB). View file
 
citekit/evaluator/evaluator.py ADDED
@@ -0,0 +1,1118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from nltk import sent_tokenize
2
+ import nltk
3
+ nltk.download('punkt')
4
+ import re
5
+ import random
6
+ import transformers
7
+ import numpy as np
8
+ from citekit.utils.utils import *
9
+ from rouge import Rouge
10
+ import torch
11
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
12
+ import copy
13
+ import torch
14
+ from tqdm import tqdm
15
+ import sys
16
+ import logging
17
+ import random
18
+ from itertools import product,combinations
19
+ import time
20
+ import logging
21
+ logger = logging.getLogger(__name__)
22
+ logger.setLevel(logging.INFO)
23
+
24
+ PIPELINE_OUTPUT = 'output'
25
+ PIPELINE_DOC_CACHE = 'doc_cache'
26
+
27
+ global autoais_model, autoais_tokenizer
28
+ autoais_model = None
29
+ autoais_tokenizer = None
30
+ get_docs_by_index = lambda i,docs: docs[i] if i < len(docs) else None
31
+ ais_LLM = None
32
+
33
+ QA_MODEL = "gaotianyu1350/roberta-large-squad"
34
+ AUTOAIS_MODEL = "google/t5_xxl_true_nli_mixture"
35
+ AUTOAIS_MODEL_ABSOLUTE = "/mnt/usercache/huggingface/t5_xxl_true_nli_mixture"
36
+
37
+ def get_cite(sent):
38
+ return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", ""),[int(r[1:]) - 1 for r in re.findall(r"\[\d+", sent)]
39
+
40
+
41
+ def entail(premise, claim):
42
+
43
+ """
44
+ Run inference for assessing AIS between a premise and hypothesis.
45
+ Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
46
+ """
47
+ global autoais_model, autoais_tokenizer
48
+ input_text = "premise: {} hypothesis: {}".format(premise, claim)
49
+ input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
50
+ with torch.inference_mode():
51
+ outputs = autoais_model.generate(input_ids, max_new_tokens=10)
52
+ result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
53
+ inference = 1 if result == "1" else 0
54
+ return inference
55
+
56
+ def load_auto_ais():
57
+ global autoais_model, autoais_tokenizer
58
+ print('Initializing eval model for citation precision and recall...')
59
+ try:
60
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, device_map="auto")
61
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
62
+
63
+ except:
64
+ print('Unable to load model from hub, trying to load from local path...')
65
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, torch_dtype=torch.bfloat16, device_map="auto")
66
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, use_fast=False)
67
+ print('Done!')
68
+
69
+ def compute_mauve(data):
70
+ """Compute Mauve score."""
71
+
72
+ logger.info("Computing MAUVE...")
73
+ human_data = []
74
+ model_data = []
75
+ for item in data:
76
+ # Remove ending punctuations
77
+ # Remove any new lines
78
+ # Truncate by 100 words
79
+ human_data.append(
80
+ ' '.join((item['question'] + " " + item['answer'].strip()).split()[:100]).rstrip(string.punctuation))
81
+ model_data.append(
82
+ ' '.join((item['question'] + " " + item['output'].strip()).split()[:100]).rstrip(string.punctuation))
83
+
84
+ import mauve
85
+ out = mauve.compute_mauve(
86
+ p_text=human_data,
87
+ q_text=model_data,
88
+ device_id=0,
89
+ max_text_length=512,
90
+ verbose=True,
91
+ batch_size=8,
92
+ featurize_model_name="gpt2-large"
93
+ )
94
+ return out.mauve * 100
95
+
96
+
97
+ def compute_rouge_l(data):
98
+ total = len(data)
99
+ res = {
100
+ "r": 0.0,
101
+ "p": 0.0,
102
+ "f": 0.0
103
+ }
104
+ for item in data:
105
+ if item['output'] and item['answer']:
106
+ rouge = Rouge()
107
+ scores = rouge.get_scores(item['output'], item['answer'])
108
+ res['r'] += scores[0]['rouge-l']['r']
109
+ res['p'] += scores[0]['rouge-l']['p']
110
+ res['f'] += scores[0]['rouge-l']['f']
111
+ else:
112
+ print('Warning: no hypothesis or references')
113
+ res['r'] /= total
114
+ res['p'] /= total
115
+ res['f'] /= total
116
+
117
+ return res
118
+
119
+ def compute_qa(question, output, short_answers, qa_pipeline=None):
120
+ """Compute QA-based accuracy.
121
+ Args:
122
+
123
+ Returns:
124
+ QA metrics (QA-EM, QA-F1, QA-Hit)
125
+ """
126
+
127
+ # Load model
128
+ if not qa_pipeline:
129
+ qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL, device='mps')
130
+
131
+ # Get prediction
132
+ em, f1, bins = 0,0,0
133
+ context = output if len(output) > 0 else " "
134
+ result = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
135
+ loc_counter, loc_em, loc_f1 = 0, 0, 0
136
+ print(result)
137
+ prediction = result["answer"]
138
+
139
+ loc_em = max([compute_exact(a, prediction) for a in short_answers])
140
+ loc_f1 = max([compute_f1(a, prediction) for a in short_answers])
141
+ loc_counter += 1
142
+
143
+ em= loc_em / loc_counter
144
+ f1= loc_f1 / loc_counter
145
+ bins = int(loc_em == loc_counter)
146
+ return em, f1, bins
147
+
148
+ def compute_qa(data):
149
+ """Compute QA-based accuracy.
150
+ Args:
151
+ data: requires filed `qa_pairs/short_answers` and `output`
152
+ Returns:
153
+ QA metrics (QA-EM, QA-F1, QA-Hit)
154
+ """
155
+
156
+ if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
157
+ #logger.warn("Warning: no QA pairs found in data")
158
+ return {
159
+ 'QA-EM': 0,
160
+ 'QA-F1': 0,
161
+ 'QA-Hit': 0,
162
+ }
163
+
164
+ # Load model
165
+ #logger.info("Loading the RoBERTa-large SQuAD model for QA-based accuracy...")
166
+ global qa_pipeline
167
+ if not qa_pipeline:
168
+ qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL)
169
+ #logger.info("Done")
170
+
171
+ # Get prediction
172
+ #logger.info("Computing the QA-based accuracy...")
173
+ em, f1, bins = [], [], []
174
+ for item in tqdm(data):
175
+ question = [qa_pair['question'] for qa_pair in item['qa_pairs']]
176
+ context = item['output'] if len(item['output']) > 0 else " "
177
+ results = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
178
+ loc_counter, loc_em, loc_f1 = 0, 0, 0
179
+
180
+ for idx, res in enumerate(results):
181
+ answers = item["qa_pairs"][idx]["short_answers"]
182
+ prediction = res["answer"]
183
+
184
+ loc_em += max([compute_exact(a, prediction) for a in answers])
185
+ loc_f1 += max([compute_f1(a, prediction) for a in answers])
186
+ loc_counter += 1
187
+
188
+ em.append(loc_em / loc_counter)
189
+ f1.append(loc_f1 / loc_counter)
190
+ bins.append(loc_em == loc_counter)
191
+
192
+ return {
193
+ 'QA-EM': 100 * np.mean(em),
194
+ 'QA-F1': 100 * np.mean(f1),
195
+ 'QA-Hit': 100 * np.mean(bins)
196
+ }
197
+
198
+
199
+ def cite_pr(sent_with_cite, docs = None, get_docs = get_docs_by_index, get_cite = get_cite, max_cite= None,rich_return = False):
200
+ """
201
+ : sent_with_cite: ONE sentence with citation like [1][2][3]
202
+ : get_docs: by default like [1][2], get ids
203
+ : docs: List, all the COMPLETE documents with TITLE
204
+
205
+ : return
206
+ number of citations, integer
207
+ recall (0 or 1)
208
+ precision (number of relevent documents)
209
+
210
+ optional;
211
+ multi_cite
212
+ mcite_support
213
+ mcite_overcite
214
+ """
215
+ if rich_return:
216
+ raise NotImplementedError
217
+
218
+ result = {'num_cites': 0,'recall':0,'precision':0,'multi_cite':0,'mcite_support' :0,'mcite_overcite':0}
219
+ sent, cites= get_cite(sent_with_cite)
220
+
221
+ if not cites:
222
+ return (0, 0, 0) if not rich_return else result # no citations
223
+ if max_cite:
224
+ cites = cites[:max_cite]
225
+ num_cites = len(cites)
226
+ result['num_cites'] = num_cites
227
+
228
+ refs = [get_docs(cite, docs) for cite in cites]
229
+ if None in refs:
230
+ return (num_cites, 0, 0) if not rich_return else result# wrong citation(s)
231
+
232
+ # recall
233
+ recall = entail(premise=''.join(refs),claim=sent)
234
+ result['recall'] = recall
235
+
236
+ # precision
237
+ precision = 0
238
+ if num_cites == 1:
239
+ precision = recall
240
+ else:
241
+ for idx, ref in enumerate(refs):
242
+ if entail(premise=ref,claim=sent):
243
+ precision += 1
244
+ else:
245
+ if not entail(premise=''.join([refs[i] for i in range(len(refs)) if i != idx]), claim = sent):
246
+ precision += 1
247
+ elif recall:
248
+ result['mcite_overcite'] = 1
249
+ result['precision'] = precision
250
+
251
+ #other
252
+ if num_cites > 1:
253
+ result['multi_cite'] = 1
254
+ if recall:
255
+ result['mcite_support'] = 1
256
+
257
+
258
+ return (num_cites, recall, precision) if not rich_return else result
259
+
260
+
261
+ def cite_pr_answer(answer, docs = None, get_docs = get_docs_by_index, get_cite = get_cite, max_cite= None,rich_return = False):
262
+ epsilon = 1e-8
263
+ num_c = 0
264
+ recall = 0
265
+ precision = 0
266
+ sents = sent_tokenize(answer)
267
+ for sent in sents:
268
+ c,r,p = cite_pr(sent,get_docs=get_docs,docs=docs,get_cite=get_cite,max_cite=max_cite,rich_return=rich_return)
269
+ num_c += c
270
+ recall += r
271
+ precision += p
272
+ # diveded by Zero!
273
+ return recall/(len(sents)+ epsilon), precision/(num_c+epsilon)
274
+
275
+
276
+ def _run_nli_autoais(passage, claim, test = False):
277
+ """
278
+ Run inference for assessing AIS between a premise and hypothesis.
279
+ Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
280
+ """
281
+ if not test:
282
+ global autoais_model, autoais_tokenizer
283
+ if not autoais_model:
284
+ load_auto_ais()
285
+ input_text = "premise: {} hypothesis: {}".format(passage, claim)
286
+ input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
287
+ with torch.inference_mode():
288
+ outputs = autoais_model.generate(input_ids, max_new_tokens=10)
289
+ result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
290
+ inference = 1 if result == "1" else 0
291
+ return inference
292
+ else:
293
+ res = random.randint(0,1)
294
+
295
+ return res
296
+
297
+ def _run_llm_autoais(passage, claim):
298
+ global ais_LLM
299
+ assert(ais_LLM)
300
+ return int(ais_LLM.generate(premise = passage, claim = claim))
301
+
302
+ def test_compute_autoais(data):
303
+ print(data[0]['docs'][:5])
304
+ print(data[0]['output'][:5])
305
+ return {
306
+ "citation_rec": random.randint(0,100),
307
+ "citation_prec": random.randint(0,100),
308
+ }
309
+
310
+ def compute_autoais(data,
311
+ decontext=False,
312
+ concat=False,
313
+ qampari=False,
314
+ at_most_sents = 3,
315
+ at_most_citations=3,
316
+ entail_function = _run_nli_autoais):
317
+ """
318
+ Compute AutoAIS score.
319
+
320
+ Args:
321
+ data: requires field `output` and `docs`
322
+ - docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
323
+ citation: check citations and use the corresponding references.
324
+ decontext: decontextualize the output
325
+ """
326
+
327
+ global autoais_model, autoais_tokenizer
328
+
329
+
330
+ ais_scores = []
331
+ ais_scores_prec = []
332
+
333
+ sent_total = 0
334
+ sent_mcite = 0
335
+ sent_mcite_support = 0
336
+ sent_mcite_overcite = 0
337
+ autoais_log = []
338
+ for item in tqdm(data):
339
+ # Get sentences by using NLTK
340
+ if qampari:
341
+ print('now qampari...')
342
+ sents = [item['question'] + " " + x.strip() for x in
343
+ item['output'].rstrip().rstrip(".").rstrip(",").split(",")]
344
+ else:
345
+ sents = sent_tokenize(item['output'])[:at_most_sents]
346
+ if len(sents) == 0:
347
+ ais_scores.append(0.0)
348
+ ais_scores_prec.append(0.0) # len(sents))
349
+ continue
350
+
351
+ target_sents = [remove_citations(sent).strip() for sent in sents]
352
+
353
+ entail = 0
354
+ entail_prec = 0
355
+ total_citations = 0
356
+ for sent_id, sent in enumerate(sents):
357
+ target_sent = target_sents[sent_id] # Citation removed and (if opted for) decontextualized
358
+ joint_entail = -1 # Undecided
359
+
360
+ # Find references
361
+ #ref = [int(r[1:]) - 1 for r in re.findall(r"\[\d+", sent)] # In text citation id starts from 1
362
+ matches = re.findall(r"\[(\d+(?:,\s*\d+)*)\]", sent)
363
+ ref = [int(num)-1 for match in matches for num in match.replace(' ', '').split(',')]
364
+ if len(ref) == 0:
365
+ # No citations
366
+ joint_entail = 0
367
+ elif any([ref_id >= len(item['docs']) for ref_id in ref]):
368
+ # Citations out of range
369
+ joint_entail = 0
370
+ else:
371
+ if at_most_citations is not None:
372
+ ref = ref[:at_most_citations]
373
+ total_citations += len(ref)
374
+ joint_passage = '\n'.join([(item['docs'][psgs_id]) for psgs_id in ref])
375
+
376
+ # If not directly rejected by citation format error, calculate the recall score
377
+ if joint_entail == -1:
378
+ joint_entail = entail_function(joint_passage, target_sent)
379
+ autoais_log.append({
380
+ #"question": item['question'],
381
+ "output": item['output'],
382
+ "claim": sent,
383
+ "passage": [joint_passage],
384
+ "model_type": "NLI",
385
+ "model_output": joint_entail,
386
+ })
387
+
388
+ entail += joint_entail
389
+ if len(ref) > 1:
390
+ sent_mcite += 1
391
+
392
+ # calculate the precision score if applicable
393
+ if joint_entail and len(ref) > 1:
394
+ sent_mcite_support += 1
395
+ # Precision check: did the model cite any unnecessary documents?
396
+ for psgs_id in ref:
397
+ # condition A
398
+ passage = item['docs'][psgs_id]
399
+ nli_result = entail_function(passage, target_sent)
400
+
401
+ # condition B
402
+ if not nli_result:
403
+ subset_exclude = copy.deepcopy(ref)
404
+ subset_exclude.remove(psgs_id)
405
+ passage = '\n'.join([item['docs'][pid] for pid in subset_exclude])
406
+ nli_result =entail_function(passage, target_sent)
407
+ if nli_result: # psgs_id is not necessary
408
+ flag = 0
409
+ sent_mcite_overcite += 1
410
+ else:
411
+ entail_prec += 1
412
+ else:
413
+ entail_prec += 1
414
+ else:
415
+ entail_prec += joint_entail
416
+ sent_total += len(sents)
417
+ ais_scores.append(entail / len(sents))
418
+ ais_scores_prec.append(entail_prec / total_citations if total_citations > 0 else 0) # len(sents))
419
+
420
+ if sent_mcite > 0 and sent_mcite_support > 0:
421
+ print(
422
+ "Among all sentences, %.2f%% have multiple citations, among which %.2f%% are supported by the joint set, among which %.2f%% overcite." % (
423
+ 100 * sent_mcite / sent_total,
424
+ 100 * sent_mcite_support / sent_mcite,
425
+ 100 * sent_mcite_overcite / sent_mcite_support
426
+ ))
427
+
428
+ return {
429
+ "citation_rec": 100 * np.mean(ais_scores),
430
+ "citation_prec": 100 * np.mean(ais_scores_prec),
431
+ }
432
+
433
+ def compute_claims_test(data):
434
+ print(data[0]['claims'])
435
+ print(data[0][PIPELINE_OUTPUT])
436
+ return random.randint(1,100)
437
+
438
+ def compute_claims(data):
439
+ global autoais_model, autoais_tokenizer
440
+ if autoais_model is None:
441
+ #logger.info("Loading AutoAIS model...")
442
+ # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
443
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
444
+ device_map="auto")
445
+ # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
446
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
447
+ #logger.info("Computing claims...")
448
+ scores = []
449
+ for item in tqdm(data):
450
+ normalized_output = remove_citations(item['output'])
451
+ entail = 0
452
+ claims = item["claims"]
453
+ for claim in claims:
454
+ entail += _run_nli_autoais(normalized_output, claim)
455
+ scores.append(entail / len(claims))
456
+ return 100 * np.mean(scores)
457
+
458
+
459
+ #citation appropriateness
460
+ def check_if_citations_needed(passages, answer, grain):
461
+
462
+ def _format_document(doc):
463
+ """Format document for AutoAIS.
464
+
465
+ if "sent" in doc:
466
+ # QA-extracted docs
467
+ return "Title: %s\n%s" % (doc['title'], doc['sent'])
468
+ else:
469
+ return "Title: %s\n%s" % (doc['title'], doc['text'])
470
+ """
471
+ return doc
472
+
473
+ global autoais_model, autoais_tokenizer
474
+ if autoais_model is None and False:
475
+ #logger.info("Loading AutoAIS model...")
476
+ # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
477
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
478
+ device_map="auto")
479
+ # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
480
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
481
+
482
+ if grain=="over_fine" or grain=="more_over_fine":
483
+ num_passages = len(passages)
484
+ passages_per_chunk = num_passages // 5 # Divide passages evenly into 5 chunks
485
+ remainder = num_passages % 5 # Handle remaining passages
486
+ passages_five=[]
487
+ start_idx = 0
488
+ for i in range(5):
489
+ end_idx = start_idx + passages_per_chunk
490
+ if remainder > 0:
491
+ end_idx += 1
492
+ remainder -= 1
493
+ chunk_passages = passages[start_idx:end_idx]
494
+ passages_five.append('\n'.join([_format_document(p) for p in chunk_passages]))
495
+ start_idx = end_idx
496
+ passages=passages_five
497
+ combinations_3 = combinations(passages, 3) # 获取所有三个passage的组合
498
+ for combination in combinations_3:
499
+ joint_passage = '\n'.join(
500
+ [passage for passage in combination]) # 将三个passage连接为一个字符串,并保留格式
501
+ entail = _run_nli_autoais(joint_passage, answer)
502
+ if entail == 1:
503
+ return 1
504
+ return 0
505
+
506
+ else:
507
+ if len(passages)>=3:#正常粒度
508
+ combinations_3 = combinations(passages, 3)
509
+ for combination in combinations_3:
510
+ joint_passage = '\n'.join(
511
+ [_format_document(passage) for passage in combination])
512
+ entail = _run_nli_autoais(joint_passage, answer)
513
+ if entail == 1:
514
+ return 1
515
+ return 0
516
+ else:#粗粒度
517
+ joint_passage = '\n'.join(
518
+ [_format_document(passage) for passage in passages])
519
+ entail = _run_nli_autoais(joint_passage, answer)
520
+ if entail == 1:
521
+ return 1
522
+ else:
523
+ return 0
524
+
525
+
526
+ #citaion granularity
527
+ def find_permutations(n, m):
528
+ '''
529
+ :param n: 最大数量总和
530
+ :param m: 位长度
531
+ :return:
532
+ '''
533
+ # Generate all possible sequences of length m
534
+ all_sequences = list(product(range(n + 1), repeat=m))
535
+ #print('all_sequences', all_sequences)
536
+
537
+ # Filter sequences where the sum of digits equals n
538
+ valid_sequences = [seq for seq in all_sequences if sum(seq) == n]
539
+ return valid_sequences
540
+
541
+
542
+ def get_subspans(list_span, span_count):
543
+ list_subspan = []
544
+ for i in range(0, len(list_span) - span_count + 1):
545
+ list_subspan.append(list_span[i: i + span_count])
546
+
547
+ return list_subspan
548
+
549
+
550
+ def get_all_span_comb(list_list_span, target_span_count=-1):
551
+ if target_span_count == -1: # 所有子集
552
+ max_span_count = len(sum(list_list_span, []))
553
+ doc_count = len(list_list_span)
554
+ list_span_comb_all = []
555
+ for span_count in range(1, max_span_count + 1):
556
+ list_comb = find_permutations(span_count, doc_count)#给定数量的子串在文本中的所有可能组合
557
+
558
+ list_span_comb = [] # 最终当前长度的所有可能组合
559
+ for comb in list_comb:
560
+ list_list_subspan = []
561
+
562
+ for idx_doc, span_count_doc in enumerate(comb):
563
+ list_subspan = get_subspans(list_list_span[idx_doc], span_count_doc)
564
+ if len(list_subspan) == 0:
565
+ list_list_subspan = None
566
+ break
567
+ list_list_subspan.append(list_subspan)
568
+
569
+ if list_list_subspan:
570
+ list_span_comb_cur = [sum(list(combination), []) for combination in product(*list_list_subspan)]
571
+ list_span_comb_cur = list(set([tuple(span_comb) for span_comb in list_span_comb_cur]))
572
+
573
+ list_span_comb += list_span_comb_cur
574
+ list_span_comb_all += list_span_comb
575
+ list_span_comb_all = set(list_span_comb_all)
576
+ else: # 当前长度的组合
577
+ doc_count = len(list_list_span)
578
+ list_comb = find_permutations(target_span_count, doc_count)
579
+
580
+ list_span_comb = [] # 最终当前长度的所有可能组合
581
+ for comb in list_comb:
582
+ list_list_subspan = []
583
+
584
+ for idx_doc, span_count_doc in enumerate(comb):
585
+ list_subspan = get_subspans(list_list_span[idx_doc], span_count_doc)
586
+ if len(list_subspan) == 0:
587
+ list_list_subspan = None
588
+ break
589
+ list_list_subspan.append(list_subspan)
590
+
591
+ if list_list_subspan:
592
+ list_span_comb_cur = [combination for combination in product(*list_list_subspan)]
593
+ for idx in range(len(list_span_comb_cur)):
594
+ list_span_comb_cur[idx] = tuple([tuple(span_comb) for span_comb in list_span_comb_cur[idx]])
595
+
596
+ list_span_comb += list_span_comb_cur
597
+ list_span_comb_all = list_span_comb
598
+ list_span_comb_all = set(list_span_comb_all)
599
+ return list_span_comb_all
600
+
601
+
602
+ def run_converge_2(list_list_span=None, sentence=None):
603
+ '''
604
+ 基于假设:更长的text不能蕴含,则其任何子串都不能蕴含
605
+ span数量递减(提供更多的剪枝选项)
606
+ 最终gold可能有一个span的误差
607
+ '''
608
+ ######
609
+ #print('origin nli count', len(get_all_span_comb(list_list_span, target_span_count=-1)))#给定文本的所有可能的子串组合
610
+ max_span_count = len(sum(list_list_span, [])) # span总数
611
+
612
+ set_comb_hash = set([])
613
+
614
+ ### span数量二分
615
+ nli_count = 0
616
+ skip_count = 0
617
+ list_list_span_gold = copy.copy(list_list_span) # 当前能够精准蕴含的span
618
+
619
+ span_count_min, span_count_max = 1, max_span_count
620
+ start_time=time.time()
621
+ timeout=300
622
+ while span_count_min < span_count_max:#每次迭代中不断寻找更小的子串组合
623
+ span_count_cur = span_count_max - 1
624
+ flag_find = False
625
+ if time.time() - start_time > timeout:
626
+ print('timeout!')
627
+ list_list_span_gold=[]
628
+ break
629
+ ### 存在可蕴含,继续找更少的span
630
+ ### 不存在可蕴含,继续找更多的span
631
+ # 长度为span_count_max - 1的所有可能的子串组合
632
+ set_comb_cur = get_all_span_comb(list_list_span, target_span_count=span_count_cur)
633
+
634
+ list_comb_cur = list(set_comb_cur)
635
+ random.shuffle(list_comb_cur)
636
+ for comb in list_comb_cur:
637
+ list_list_span_cur = [list(t) for t in comb]
638
+ list_span_cur = sum(list_list_span_cur, [])
639
+ str_text = ' '.join(list_span_cur) # TODO: 统一字符串化的方式
640
+
641
+ if hash(str_text) in set_comb_hash:
642
+ skip_count += 1
643
+ continue
644
+
645
+ #### ⚠️ 注意在这里替换nli函数
646
+ nli_label = _run_nli_autoais(str_text, sentence) # TODO: nli label function
647
+ nli_count += 1
648
+
649
+ if nli_label == 1: # 只要存在可蕴含,直接继续找更少的span
650
+ list_list_span_gold = copy.copy(list_list_span_cur)
651
+ span_count_max = span_count_cur#更新span数量上限
652
+ flag_find = True
653
+ # print(f"find nli!, nli_count: {nli_count}, skip_count: {skip_count}, len(set_comb_hash): {len(set_comb_hash)}", )
654
+ break
655
+ else: # 不能蕴含,剪枝所有子集
656
+ set_comb_cur_del = get_all_span_comb(list_list_span_cur, target_span_count=-1)
657
+ set_comb_hash_cur = set([hash(' '.join(list(tuple_comb_))) for tuple_comb_ in set_comb_cur_del]) # TODO: 统一字符串化的方式
658
+
659
+ set_comb_hash |= set_comb_hash_cur
660
+ if flag_find == False:
661
+ print(f"CAN'T find nli!, nli_count: {nli_count}, skip_count: {skip_count}, len(set_comb_hash): {len(set_comb_hash)}", )
662
+ break
663
+ span_count_gold = span_count_max # gold的span数量
664
+ print('len(set_comb_del)', len(set_comb_hash))
665
+ print('nli_count', nli_count, 'skip_count', skip_count, 'span_count_gold', span_count_gold)
666
+ return list_list_span_gold
667
+
668
+
669
+ def compute_autoais_grained(data,
670
+ at_most_citations=3,method='ALCE',grain='default'):
671
+
672
+ """
673
+ Compute AutoAIS score.
674
+
675
+ Args:
676
+ data: requires field `output` and `docs`
677
+ - docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
678
+ citation: check citations and use the corresponding references.
679
+ decontext: decontextualize the output
680
+ """
681
+ global autoais_model, autoais_tokenizer
682
+ if autoais_model is None and False:
683
+ #logger.info("Loading AutoAIS model...")
684
+ # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
685
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
686
+ device_map="auto")
687
+ # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
688
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
689
+ def _format_document(doc):
690
+
691
+ """Format document for AutoAIS."""
692
+ if isinstance(doc, dict):
693
+ if "sent" in doc:
694
+ # QA-extracted docs
695
+ return "Title: %s\n%s" % (doc['title'], doc['sent'])
696
+ else:
697
+ return "Title: %s\n%s" % (doc['title'], doc['text'])
698
+ elif isinstance(doc,str):
699
+ return doc
700
+
701
+
702
+ #logger.info(f"Running AutoAIS...")
703
+
704
+ ais_scores_need = [] # 是否需要引用
705
+ ais_scores = [] # quote_recall
706
+ ais_doc_scores=[]#doc_recall
707
+
708
+ sent_total = 0
709
+
710
+ autoais_log = []
711
+ granularity_list = []
712
+ skipped =0
713
+ for item in tqdm(data):
714
+ output = item['output']
715
+
716
+ if method=='baseline':
717
+ model_answer=item['output_parse']['answer']
718
+ answer = ''
719
+ reference = {}
720
+ span_contents = {}
721
+ if not model_answer["text"].endswith("."):
722
+ model_answer["text"] += "."
723
+ answer += " " + model_answer["text"]
724
+ spans = model_answer['reference']
725
+ for span in spans:
726
+ match = re.match(r'^(\d+)\.', span)
727
+ if match:
728
+ span_number = match.group(1)
729
+ span_content = span.split('. ', 1)[1].strip() # 获取1. 后面的内容
730
+ span_contents[span_number] = span_content
731
+ reference.update(span_contents)
732
+
733
+ item['output_answer'] = answer.strip()
734
+ item['output_ref_span'] = reference
735
+ output = item['output_answer']
736
+
737
+ elif method=='ALCE':
738
+ # 匹配 According to Document
739
+ pattern_doc = r"According to Document \[(\d+)\]"
740
+ # 匹配 (Title: Godfrey Chitalu)
741
+ pattern_title = r"\(Title: [^\)]+\)"
742
+
743
+ output = re.sub(pattern_doc, r"[\1]", output)
744
+ output = re.sub(pattern_title, "", output)
745
+ output=output.strip().split("\n")[0]
746
+ output=output.replace("<|im_end|>", "")
747
+ # Get sentences by using NLTK
748
+ sents = sent_tokenize(output)[:3]
749
+ if len(sents) == 0:
750
+ continue
751
+
752
+ target_sents = [remove_citations(sent).strip() for sent in sents]
753
+ output_ref_span = item.get('output_ref_span', {})
754
+ # sent_joint_passage = '\n'.join([_format_document(doc) for doc in item['docs']])
755
+
756
+ entail = 0
757
+ entail_doc=0
758
+ total_citations = 0
759
+ need_citations_sentences = 0 # 一个回答中需要引用的句子数量
760
+ correct_predictions = 0 # 新增:记录正确的预测是否需要引用的子句数量
761
+
762
+ for sent_id, sent in enumerate(sents):
763
+ target_sent = target_sents[sent_id] # Citation removed and (if opted for) decontextualized
764
+ joint_entail = -1 # Undecided
765
+ joint_doc_entail=-1
766
+
767
+ # 1. appropriatness
768
+ # 每句话是否需要引用
769
+ need_citations = check_if_citations_needed(item['docs'], target_sent,grain)
770
+
771
+
772
+ if method=='baseline':
773
+ # Find references number
774
+ ref_mark = [int(r[1:]) for r in re.findall(r"\{\d+", sent)]
775
+ # 引用的span(拼��)match document
776
+ ref, ref_span = match_document(ref_mark, output_ref_span)
777
+ #logger.info(f"For `{target_sent}`, find citations {ref}")
778
+ ref_id = [x -1 for x in ref]
779
+ processed_refs = set()
780
+ ref_passage = []
781
+ for psgs_id in ref_id:
782
+ if 0 <= psgs_id < len(item['docs']) and psgs_id not in processed_refs:
783
+ ref_passage.append(_format_document(item['docs'][psgs_id]))
784
+ processed_refs.add(psgs_id)
785
+ elif psgs_id in processed_refs:
786
+ print("Warning: psgs_id already processed:", psgs_id + 1)
787
+ else:
788
+ print("Error: psgs_id out of range:", psgs_id+1)
789
+
790
+ joint_span = '\n'.join(ref_span)
791
+ joint_passage = '\n'.join(ref_passage)
792
+
793
+ elif method=='ALCE':
794
+ ref = list(set([int(r[1:]) for r in re.findall(r"\[\d+", sent)]))
795
+ #logger.info(f"For `{target_sent}`, find citations {ref}")
796
+ ref_id=list(set([int(r[1:])-1 for r in re.findall(r"\[\d+", sent)]))
797
+ processed_refs = set()
798
+ ref_passage = []
799
+ for psgs_id in ref_id:
800
+ if 0 <= psgs_id < len(item['docs']) and psgs_id not in processed_refs:
801
+ ref_passage.append(_format_document(item['docs'][psgs_id]))
802
+ processed_refs.add(psgs_id)
803
+ elif psgs_id in processed_refs:
804
+ print("Warning: psgs_id already processed:", psgs_id+1)
805
+ else:
806
+ print("Error: psgs_id out of range:", psgs_id+1)
807
+ ref_span=ref_passage
808
+ joint_passage = '\n'.join(ref_passage)
809
+ joint_span=joint_passage
810
+
811
+
812
+ autoais_log.append({
813
+ "question": item['question'],
814
+ "output_answer": item['output'],
815
+ "docs": item['docs'],
816
+ "claim": {
817
+ "sentence": sent,
818
+ "if_citations_needed": need_citations,
819
+ "has_reference": ref,
820
+ "doc_recall": None,
821
+ "quote_recall": None,
822
+ "granularity_score":None,
823
+ "granularity_span":None
824
+ }
825
+ })
826
+
827
+ if len(ref) == 0:
828
+ # No citations
829
+ joint_entail = 0
830
+ joint_doc_entail=0
831
+ elif any([ref_id > len(item['docs']) for ref_id in ref]):
832
+ # Citations out of range
833
+ joint_entail = 0
834
+ joint_doc_entail=0
835
+ else:
836
+ if at_most_citations is not None:
837
+ ref = ref[:at_most_citations]
838
+ total_citations += len(ref)
839
+
840
+ # 更新正确预测是否需要引用的数量
841
+ if_citations_needed = autoais_log[-1]["claim"]["if_citations_needed"]
842
+ has_reference = autoais_log[-1]["claim"]["has_reference"]
843
+ if (if_citations_needed == 1 and has_reference) or (if_citations_needed == 0 and not has_reference):
844
+ correct_predictions += 1
845
+ #logger.info("citation appropriateness finished")
846
+
847
+ # 2. 在需要引用的情况下才计算citation correctness
848
+ if need_citations and has_reference:#需要引用且引用了才考虑后两个指标
849
+ start_time = time.time()
850
+ need_citations_sentences += 1
851
+ # 2.(1):quote_corr
852
+ # If not directly rejected by citation format error, calculate the recall score
853
+ if joint_entail == -1:
854
+ # φ(premise, hypothesis)判断所有引用span的拼接是否entail模型的回答output
855
+ joint_entail = _run_nli_autoais(joint_span, target_sent)
856
+ entail += joint_entail
857
+ autoais_log[-1]["claim"]["quote_recall"] = joint_entail
858
+ #logger.info(f"citation recall finished, recall is {joint_entail}")
859
+
860
+ #2.(2):doc_corr
861
+ if joint_doc_entail == -1:
862
+ if method=='ALCE':
863
+ joint_doc_entail=joint_entail
864
+ elif method=='baseline':
865
+ joint_doc_entail=_run_nli_autoais(joint_passage, target_sent)
866
+ entail_doc+=joint_doc_entail
867
+ autoais_log[-1]["claim"]["doc_recall"] = joint_doc_entail
868
+ #print(f"the total time for two recall is {time.time() - start_time}")
869
+
870
+
871
+
872
+ # 4. 只有quote_corr=1(当该条数据,所有引用的拼接可以entail模型output的时候,)才计算引用粒度granularity
873
+ start_time=time.time()
874
+ if joint_entail:
875
+ all_clauses = []
876
+ clauses_first_three = []
877
+ # 遍历每个不同的this_span
878
+ #logger.info("calculating granularity")
879
+ if len(ref_span)>5:
880
+ print("Too many quotations!")
881
+ autoais_log[-1]["claim"]["granularity_score"] = None
882
+ autoais_log[-1]["claim"]["granularity_span"] = 0
883
+ else:
884
+ for idx, this_span in enumerate(ref_span):
885
+ #logger.info(f"this span is {this_span}")
886
+ # 分割引用跨度为子句
887
+ clauses = re.split(r'([,.])', this_span)
888
+ clauses = [clause.strip() for clause in clauses if
889
+ clause.strip() and any(char.isalnum() for char in clause.strip())]
890
+ all_clauses.append(clauses)
891
+ if idx<3:
892
+ clauses_first_three.append(clauses)
893
+
894
+ max_span_count = len(sum(all_clauses, []))
895
+ if max_span_count==0:
896
+ continue
897
+ doc_count = len(all_clauses)
898
+ min_comb_length=float('inf')
899
+
900
+ if method=="ALCE" and grain=="default":
901
+ gold_span_res=run_converge_2(clauses_first_three,target_sent)
902
+ else:
903
+ gold_span_res = run_converge_2(all_clauses, target_sent)
904
+ # gold结果
905
+ merged_gold_span_res = []
906
+
907
+ # 遍历嵌套列表,并将其中的子列表合并到大列表中
908
+ for sublist in gold_span_res:
909
+ merged_gold_span_res.extend(sublist)
910
+ autoais_log[-1]["claim"]["granularity_span"] = merged_gold_span_res
911
+ min_comb_length=len(merged_gold_span_res)
912
+ if min_comb_length!=float('inf'):
913
+ granularity_score = min_comb_length / max_span_count
914
+ granularity_list.append(granularity_score)
915
+ autoais_log[-1]["claim"]["granularity_score"] = granularity_score
916
+
917
+
918
+ print(autoais_log[-1]["claim"]["granularity_span"])
919
+ print(autoais_log[-1]["claim"]["granularity_score"])
920
+ print(f"the total time for granularity is {time.time() - start_time}")
921
+ else:#不需要引用或没有引用
922
+ autoais_log[-1]['claim']['recall']=None
923
+ autoais_log[-1]["claim"]["granularity_score"]=None
924
+ autoais_log[-1]["claim"]["granularity_span"]=None
925
+
926
+
927
+ sent_total += len(sents)
928
+ ais_scores_need.append(correct_predictions / len(sents)) #是否正确判断需不需要引用:正确判断/总
929
+ if need_citations_sentences!=0: # recall:能entail的/需要引用的
930
+ ais_scores.append(entail / need_citations_sentences)
931
+ ais_doc_scores.append(entail_doc / need_citations_sentences)
932
+
933
+ #过滤None
934
+ granularity_list = [value for value in granularity_list if value is not None]
935
+
936
+ #logger.info(f"skipped {skipped}")
937
+ #autoais_log.append(f"skipped {skipped}")
938
+ ##print(autoais_log)
939
+ # print(ais_scores_need,ais_doc_scores,ais_scores,granularity_list)
940
+ return {
941
+ "citation_correct_prediction": 100 * np.mean(ais_scores_need),
942
+ "citation_doc_rec":100 * np.mean(ais_doc_scores),
943
+ "citation_quote_rec": 100 * np.mean(ais_scores),
944
+ "citation_granularity": 100 * np.mean(granularity_list)
945
+ } #autoais_log
946
+
947
+ def compute_qampari_f1(data, cot=False):
948
+ prec = []
949
+ rec = []
950
+ rec_top5 = []
951
+ f1 = []
952
+ f1_top5 = []
953
+
954
+ num_preds = []
955
+ for item in data:
956
+ if cot:
957
+ if ":" in item['output']:
958
+ o = ':'.join(item['output'].split(":")[1:]) # try to separate the COT part and the answer list part.
959
+ else:
960
+ o = ""
961
+ else:
962
+ o = item['output']
963
+ preds = [normalize_answer(x.strip()) for x in remove_citations(o).rstrip().rstrip(".").rstrip(",").split(",")]
964
+ preds = [p for p in preds if len(p) > 0] # delete empty answers
965
+ #print(preds)
966
+ num_preds.append(len(preds))
967
+ answers = [[normalize_answer(x) for x in ans] for ans in item['answers']]
968
+ flat_answers = [item for sublist in answers for item in sublist]
969
+ #print(flat_answers)
970
+ prec.append(sum([p in flat_answers for p in preds]) / len(preds) if len(preds) > 0 else 0)
971
+ #print(prec)
972
+ rec.append(sum([any([x in preds for x in a]) for a in answers]) / len(answers))
973
+ rec_top5.append(min(5, sum([any([x in preds for x in a]) for a in answers])) / min(5, len(answers)))
974
+ if (prec[-1] + rec[-1]) == 0:
975
+ f1.append(0)
976
+ else:
977
+ f1.append(2 * prec[-1] * rec[-1] / (prec[-1] + rec[-1]))
978
+ if (prec[-1] + rec_top5[-1]) == 0:
979
+ f1_top5.append(0)
980
+ else:
981
+ f1_top5.append(2 * prec[-1] * rec_top5[-1] / (prec[-1] + rec_top5[-1]))
982
+
983
+ return {
984
+ "num_preds": np.mean(num_preds),
985
+ "qampari_prec": 100 * np.mean(prec),
986
+ "qampari_rec": 100 * np.mean(rec),
987
+ "qampari_rec_top5": 100 * np.mean(rec_top5),
988
+ "qampari_f1": 100 * np.mean(f1),
989
+ "qampari_f1_top5": 100 * np.mean(f1_top5),
990
+ }
991
+
992
+ def compute_length(data):
993
+ return sum(len(item['output'].split(' '))for item in data)/(len(data))
994
+
995
+
996
+ if __name__ =='__main__':
997
+ #question = "Why did New York City try to ban food donations to the poor?"
998
+ #output = "New York City, under Mayor Michael Bloomberg's administration, tried to ban food donations to the poor mainly due to concerns about the nutritional content of the donated food. The city argued that it couldn't inspect donated food for its salt, fat, and fiber content, thereby making it hard to control the nutritional quality of the food served to its homeless population [1][2][3]. Critics of this policy, however, have claimed such an approach demonstrated excessive control over people's eating habits and lacked common sense [2]. Despite the ban, many organizations like the New York City Rescue Mission continued to serve needy citizens through food donations [5]."
999
+ #compute_qa(question,output,['',''])
1000
+ pass
1001
+
1002
+
1003
+
1004
+ class Evaluator():
1005
+ autoais_model_load = False
1006
+
1007
+ eval_criteria = {'test_pr':test_compute_autoais,'cite_recall_precision':compute_autoais, 'pr':compute_autoais,'qa':compute_qa,'rouge': compute_rouge_l,'claims':compute_claims, 'qampari':compute_qampari_f1,'length':compute_length,'str_em':compute_str_em,'grained':compute_autoais_grained,'cite_recall_precision_llm':lambda data: compute_autoais(data=data,entail_function=_run_llm_autoais),'mauve':compute_mauve}
1008
+ def __init__(self,criteria= None, pipeline = None, ais_model = None) -> None:
1009
+ self.eval_criteria = Evaluator.eval_criteria
1010
+ self.pipeline = pipeline
1011
+ self.get_data = {}
1012
+ self.ais_model = ais_model
1013
+ global ais_LLM
1014
+ ais_LLM = ais_model
1015
+
1016
+
1017
+
1018
+ def set_eval(self, eval_c, **data_get_key):
1019
+ if eval_c in self.get_data.keys():
1020
+ print(f'Already set! {eval_c}')
1021
+ return
1022
+ if eval_c in self.eval_criteria.keys():
1023
+ self.get_data[eval_c] = data_get_key
1024
+ if eval_c == 'cite_recall_precision':
1025
+ global autoais_model, autoais_tokenizer
1026
+ if not Evaluator.autoais_model_load:
1027
+ print('Initializing eval model for citation precision and recall...')
1028
+ try:
1029
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, device_map="auto")
1030
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
1031
+
1032
+ except:
1033
+ print('Unable to load model from hub, trying to load from local path...')
1034
+ autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, torch_dtype=torch.bfloat16, device_map="auto")
1035
+ autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, use_fast=False)
1036
+ Evaluator.autoais_model_load = True
1037
+ if eval_c == 'qa':
1038
+ global qa_pipeline
1039
+ qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL)
1040
+
1041
+ else:
1042
+ raise KeyError('eval_criteria unavailable')
1043
+
1044
+ def new_eval(self, name, eval_func, **data_get_key):
1045
+ self.eval_criteria[name] = eval_func
1046
+ self.set_eval(name, **data_get_key)
1047
+
1048
+ def __call__(self,data_from_pipeline= None):
1049
+ result = {}
1050
+
1051
+ for criteria, get_data in self.get_data.items():
1052
+ if not data_from_pipeline:
1053
+ data_dict = {}
1054
+ for k, v in get_data.items():
1055
+ if isinstance(v,str):
1056
+ if v == 'output':
1057
+ data_dict[k] = ' '.join(self.pipeline.output)
1058
+ elif v == 'doc_cache':
1059
+ data_dict[k] = self.pipeline.doc_cache
1060
+ else:
1061
+ data_dict[k] = self.pipeline.dataset[self.pipeline.data_index][v]
1062
+ else:
1063
+ data_dict[k] = v
1064
+ else:
1065
+ data_dict = data_from_pipeline
1066
+
1067
+ eval_func = self.eval_criteria[criteria]
1068
+ data = [data_dict]
1069
+ result[criteria] = eval_func(data)
1070
+ return result
1071
+
1072
+
1073
+
1074
+ class DefaultEvaluator(Evaluator):
1075
+ def __init__(self, args = None, criteria= None, pipeline = None) -> None:
1076
+ super().__init__(criteria,pipeline)
1077
+ if args:
1078
+ if hasattr(args,'str_em') and args.str_em:
1079
+ self.set_eval('str_em',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
1080
+ if hasattr(args,'pr') and args.pr:
1081
+ self.set_eval('cite_recall_precision', output = PIPELINE_OUTPUT, docs = PIPELINE_DOC_CACHE, question = 'question')
1082
+ if hasattr(args,'mauve') and args.mauve:
1083
+ self.set_eval('mauve', output = PIPELINE_OUTPUT, answer = 'answer' ,question = 'question')
1084
+ if hasattr(args,'rouge') and args.rouge:
1085
+ if (hasattr(args, 'dataset') and 'qampari' not in args.dataset.lower()) or not hasattr(args, 'dataset'):
1086
+ self.set_eval('rouge', output = PIPELINE_OUTPUT, answer = 'answer')
1087
+ if hasattr(args,'qa') and args.qa:
1088
+ if (hasattr(args, 'dataset') and 'asqa' in args.dataset.lower()) or not hasattr(args, 'dataset'):
1089
+ self.set_eval('qa',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
1090
+ if hasattr(args,'claims') and args.claims:
1091
+ if (hasattr(args, 'dataset') and 'eli5' in args.dataset.lower()) or not hasattr(args, 'dataset'):
1092
+ self.set_eval('claims',output = PIPELINE_OUTPUT, claims = 'claims')
1093
+ if hasattr(args,'qampari') and args.qampari:
1094
+ if (hasattr(args, 'dataset') and 'qampari' in args.dataset.lower()) or not hasattr(args, 'dataset'):
1095
+ self.set_eval('qampari',output = PIPELINE_OUTPUT, answers = 'answers')
1096
+ if hasattr(args,'length') and args.length:
1097
+ self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)
1098
+
1099
+ elif criteria:
1100
+ if 'cite_recall_precision' in criteria:
1101
+ self.set_eval('cite_recall_precision', output = PIPELINE_OUTPUT, docs = PIPELINE_DOC_CACHE, question = 'question')
1102
+ if hasattr(args,'mauve') and args.mauve:
1103
+ self.set_eval('mauve', output = PIPELINE_OUTPUT, answer = 'answer' ,question = 'question')
1104
+ if 'rouge' in criteria:
1105
+ self.set_eval('rouge', output = PIPELINE_OUTPUT, answer = 'answer')
1106
+ if 'qa' in criteria:
1107
+ self.set_eval('qa',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
1108
+ if 'str_em' in criteria:
1109
+ self.set_eval('str_em',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
1110
+ if 'claims' in criteria:
1111
+ self.set_eval('claims',output = PIPELINE_OUTPUT, claims = 'claims')
1112
+ if 'qampari' in criteria:
1113
+ self.set_eval('qampari',output = PIPELINE_OUTPUT, answers = 'answers')
1114
+ if 'length' in criteria:
1115
+ self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)
1116
+
1117
+ else:
1118
+ self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)
citekit/pipeline/__pycache__/pipeline.cpython-310.pyc ADDED
Binary file (9.46 kB). View file
 
citekit/pipeline/__pycache__/pipeline.cpython-312.pyc ADDED
Binary file (21.4 kB). View file
 
citekit/pipeline/__pycache__/pipeline_inter.cpython-310.pyc ADDED
Binary file (6.64 kB). View file
 
citekit/pipeline/pipeline.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from citekit.cite_modules.LLM import LLM,Module
2
+ from citekit.cite_modules.augment_model import AugmentCluster, AttributingModule, MODEL_TYPE_MAPPING
3
+ from citekit.prompt.prompt import ALCEVanillaPrompt, DocPrompt
4
+ import logging
5
+ import json
6
+ from tqdm import tqdm
7
+ import traceback
8
+ import copy
9
+ from citekit.utils.utils import flatten_dict
10
+ import csv
11
+
12
+
13
+
14
+ def merge_str_dicts(dicts):
15
+ result = {}
16
+ for dictionary in dicts:
17
+ for key, value in dictionary.items():
18
+ if key in result:
19
+ result[key] += ' ' + value
20
+ else:
21
+ result[key] = value
22
+ return result
23
+
24
+ PIPELINE_OUTPUT = 'output'
25
+ PIPELINE_DOC_CACHE = 'doc_cache'
26
+
27
+ class DocCache():
28
+ def __init__(self) -> None:
29
+ self.__docs = list()
30
+
31
+ def __len__(self):
32
+ return len(self.__docs)
33
+
34
+ def __getitem__(self,index):
35
+ if index>=0 and index <len(self):
36
+ return self.__docs[index]
37
+ else:
38
+ return None
39
+
40
+ def get_last(self):
41
+ if self.__docs:
42
+ return self.__docs[-1]
43
+
44
+ def add_doc(self, doc, add_id = True) -> int:
45
+ if not isinstance(doc, str):
46
+ assert isinstance(doc, dict) and 'text' in doc and 'title' in doc
47
+ doc = f'(Title: {doc["title"]}){doc["text"]}'
48
+ if add_id:
49
+ doc_head = f'Document [{len(self)+1}]'
50
+ else:
51
+ doc_head = ''
52
+ self.__docs.append(doc_head + doc)
53
+ return len(self)
54
+
55
+ def load_docs(self, docs, add_id = False):
56
+ for doc in docs:
57
+ self.add_doc(doc, add_id)
58
+ return len(self)
59
+
60
+ def clear(self):
61
+ self.__docs = list()
62
+
63
+ def show_docs(self):
64
+ return self.__docs
65
+
66
+
67
+ class Pipeline():
68
+ def __init__(self,save_path = None, sequence = None, head_prompt_maker = None, llm = None, module= None, retriever = None, evaluator = None, dataset = None, rich_eval = False, train_data = False, attributer = None) -> None:
69
+ self.save_path = save_path
70
+ self.train_data = train_data
71
+ self.head_prompt_maker = head_prompt_maker
72
+ self.table_head = True
73
+ self.attributer = attributer
74
+ self.llm = llm
75
+ self.initial_docs = None
76
+ self.data_keys = None
77
+ self.stored_clusters = []
78
+ self.module = []
79
+ if llm:
80
+ llm.connect_to(self)
81
+ if not isinstance(module,list) and module is not None:
82
+ if module:
83
+ module.connect_to(self)
84
+ else:
85
+ if isinstance(module, list):
86
+ for i in module:
87
+ if isinstance(i, AugmentCluster) or isinstance(i, Module):
88
+ i.connect_to(self)
89
+ self.dataset = dataset
90
+
91
+ self.data_index = 0
92
+ self.retriever = retriever
93
+ if retriever:
94
+ retriever.pipeline = self
95
+
96
+ self.eval = evaluator
97
+ if evaluator:
98
+ evaluator.pipeline = self
99
+ self.output = []
100
+ self.log = []
101
+ self.doc_cache = DocCache()
102
+ self.head = {}
103
+ self.result = {}
104
+ self.rich_eval = rich_eval
105
+ self.initial_module = None
106
+
107
+ def load_data(self, dataset):
108
+ self.data = dataset
109
+
110
+ def set_initial_module(self, module):
111
+ self.initial_module = module
112
+ def get_initial_module(self):
113
+ return self.initial_module
114
+
115
+ def set_data_keys(self, keys):
116
+ self.data_keys = keys
117
+ def get_data_keys(self):
118
+ return self.data_keys
119
+
120
+
121
+ def update(self, update_object, config, update_info):
122
+ print(f'Updating {update_object} with {config} and {update_info}')
123
+ module = self.get_module_by_name(update_object)
124
+ if config in ['prompt', 'header']:
125
+ module.update(config, update_info)
126
+ elif config in ['destination']:
127
+ module.update(config, [self.get_module_by_name(update_info[0]), update_info[1]])
128
+ elif config in ['delete_destination']:
129
+ module.update(config, self.get_module_by_name(update_info))
130
+ elif config in ['new_model']:
131
+ model_type, model, key = update_info
132
+ print('Creating new model:', model_type, model)
133
+ new_model_class = MODEL_TYPE_MAPPING[model_type]
134
+ print('New model class:', new_model_class)
135
+ new_model = new_model_class(model)
136
+ new_model.connect_to(self)
137
+ print('Created new model:', new_model)
138
+ module.update('destination', [new_model, key])
139
+
140
+ else:
141
+ raise NotImplementedError
142
+
143
+
144
+
145
+ def set_initial_docs(self, d):
146
+ self.initial_docs = d
147
+ def get_initial_docs(self):
148
+ return self.initial_docs
149
+
150
+ def run_on_dataset(self,datakeys,init_docs=None,initial_module= None,start=0):
151
+ if self.initial_module and not initial_module:
152
+ initial_module = self.initial_module
153
+ if self.save_path:
154
+ for i in range(start,len((self.dataset))):
155
+ self.data_index = i
156
+ try:
157
+ self.run(datakeys,init_docs,initial_module,train=self.train_data)
158
+ except Exception as e:
159
+ print(f'Error: {e}, skipping data {i}')
160
+ traceback.print_exc()
161
+ else:
162
+ for i in range(start,len((self.dataset))):
163
+ self.data_index = i
164
+ try:
165
+ self.run(datakeys,init_docs,initial_module,write=False,train=self.train_data)
166
+ except Exception as e:
167
+ print(f'Error: {e}, skipping data {i}')
168
+ traceback.print_exc()
169
+
170
+
171
+
172
+ def form_eval_data(self) -> dict:
173
+ """To write rich eval, you can use data from:
174
+ pipeline.dataset, doc_cache and output
175
+ to post_process data as a argument dict for evaluation
176
+ """
177
+ raise NotImplementedError('You have to write <form_eval_data function> to apply rich eval with designed arguments.')
178
+
179
+ def direct_run(self, dynamic_prompt= {}, module = None):
180
+ if not module:
181
+ module = self.llm
182
+ if isinstance(module, AugmentCluster):
183
+ module = module.get_first_module()
184
+ while isinstance(module, Module):
185
+ if isinstance(dynamic_prompt,dict):
186
+ module.change_to_multi_process(False)
187
+ dynamic_prompt = module.generate(self.head,dynamic_prompt=dynamic_prompt)
188
+ elif isinstance(dynamic_prompt,list) and all([isinstance(d,dict) for d in dynamic_prompt]):
189
+ module.change_to_multi_process(True)
190
+ if module.parallel:
191
+ dynamic_prompt = [module.generate(self.head,d) for d in dynamic_prompt]
192
+ if module.merge:
193
+ dynamic_prompt = merge_str_dicts(dynamic_prompt)
194
+ module.add_output_to_head(module.last_message)
195
+ elif not module.iterative and not module.merge:
196
+ for d in dynamic_prompt:
197
+ self.direct_run(dynamic_prompt = d, module = copy.copy(module))
198
+ #dynamic_prompt = [module.generate(self.head,d) for d in dynamic_prompt]
199
+ break
200
+ elif module.iterative:
201
+ iter_dynamic = {}
202
+ for d in dynamic_prompt:
203
+ iter_dynamic = module.generate(self.head,{**d,**iter_dynamic})
204
+ dynamic_prompt = iter_dynamic
205
+ module.end_multi()
206
+ else:
207
+ print(type(dynamic_prompt))
208
+ raise TypeError(str(dynamic_prompt))
209
+ self.log.append(f'{module} -> {module.send()}\n: {module.last_message}')
210
+ if isinstance(module, Module):
211
+ module.output()
212
+ print('DEBUG:', str(module), module.end, module.turns, module.max_turn)
213
+ if module.end or module.turns > module.max_turn:
214
+ break
215
+ module = module.send()
216
+ if isinstance(module, AugmentCluster):
217
+ module = module.get_first_module()
218
+
219
+
220
+ def __call__(self, data):
221
+ # run only one data
222
+ # backup
223
+ dataset_backup = self.dataset
224
+ current_data_index_backup = self.data_index
225
+ if hasattr(self,'current_data'):
226
+ current_data_backup = self.current_data
227
+ else:
228
+ current_data_backup = None
229
+
230
+ # set data and run
231
+ dataset = [data]
232
+ self.dataset = dataset
233
+ self.data_index = 0
234
+ result = self.run(datakeys = self.data_keys, init_docs = self.initial_docs, initial_module = self.initial_module, write = False, train = False)
235
+
236
+ # restore
237
+ self.data_index = current_data_index_backup
238
+ self.current_data = current_data_backup
239
+ self.dataset = dataset_backup
240
+
241
+
242
+ return result
243
+
244
+ def run(self, datakeys, init_docs = None, initial_module = None, write = True, train = False):
245
+
246
+ # get data
247
+ self.current_data = self.dataset[self.data_index]
248
+ data = self.current_data
249
+
250
+ # from head prompt from specific data
251
+ head = dict()
252
+ for key in datakeys:
253
+ if isinstance(data[key],str):
254
+ head[key] = data[key]
255
+ else:
256
+ assert isinstance(data[key],list)
257
+ assert all([isinstance(item, str) for item in data[key]])
258
+ head[key] = ''.join(data[key])
259
+
260
+ #init
261
+ self.head = head
262
+ self.output = []
263
+ self.doc_cache.clear()
264
+ if init_docs:
265
+ self.doc_cache.load_docs(data[init_docs])
266
+ self.llm.reset()
267
+ if self.module:
268
+ for i in self.module:
269
+ i.reset()
270
+ self.log = []
271
+ # run only one data, and add data_index by 1
272
+ dynamic_prompt = {}
273
+ if not initial_module:
274
+ module = self.llm
275
+ else:
276
+ module = initial_module
277
+ if isinstance(module, AugmentCluster):
278
+ module = module.get_first_module()
279
+ while isinstance(module, Module):
280
+ if isinstance(dynamic_prompt,dict):
281
+ module.change_to_multi_process(False)
282
+ dynamic_prompt = module.generate(self.head,dynamic_prompt=dynamic_prompt)
283
+ elif isinstance(dynamic_prompt,list) and all([isinstance(d,dict) for d in dynamic_prompt]):
284
+ module.change_to_multi_process(True)
285
+ if module.parallel:
286
+ dynamic_prompt = [module.generate(self.head,d) for d in dynamic_prompt]
287
+ if module.merge:
288
+ dynamic_prompt = merge_str_dicts(dynamic_prompt)
289
+ module.add_output_to_head(module.last_message)
290
+ elif not module.iterative and not module.merge:
291
+ for d in dynamic_prompt:
292
+ self.direct_run(dynamic_prompt = d, module = copy.copy(module))
293
+ #dynamic_prompt = [module.generate(self.head,d) for d in dynamic_prompt]
294
+ break
295
+
296
+ elif module.iterative:
297
+ iter_dynamic = {}
298
+ for d in dynamic_prompt:
299
+ iter_dynamic = module.generate(self.head,{**d,**iter_dynamic})
300
+ dynamic_prompt = iter_dynamic
301
+ module.end_multi()
302
+ else:
303
+ print(type(dynamic_prompt))
304
+ raise TypeError(str(dynamic_prompt))
305
+ self.log.append(f'{module} -> {module.send()}\n: {module.last_message}')
306
+ if isinstance(module, Module):
307
+ module.output()
308
+ if module.end or module.turns > module.max_turn:
309
+ break
310
+ module = module.send()
311
+ if isinstance(module, AugmentCluster):
312
+ module = module.get_first_module()
313
+
314
+ # if eval, send to evaluation
315
+ if self.eval:
316
+ if not self.rich_eval:
317
+ self.result = self.eval()
318
+ else:
319
+ self.result = self.eval(self.form_eval_data())
320
+ else:
321
+ self.result = {}
322
+ if write:
323
+ self.write()
324
+ if train:
325
+ self.export_training_data()
326
+
327
+ #self.logs = self.delete_inner_cluster_logs(self.log)
328
+ res = {'data':self.get_data(), 'doc_cache':self.doc_cache.show_docs(), 'log': self.log.copy(),'output':self.output,'result': self.result}
329
+ if self.attributer:
330
+ self.attributer.attribute_for_result(res)
331
+ self.data_index += 1
332
+ return res
333
+
334
+ def delete_inner_cluster_logs(self, logs):
335
+ print(logs)
336
+ for cluster in self.stored_clusters:
337
+ cluster_name = str(cluster)
338
+ print('Combining logs for cluster:', cluster_name)
339
+ in_cluster = False
340
+ for i, log in enumerate(logs):
341
+ in_out_names = log.split('\n')[0]
342
+ if in_out_names in cluster_name:
343
+ # This is the inner log
344
+ if not in_cluster:
345
+ in_cluster = True
346
+ log_start = i
347
+ else:
348
+ continue
349
+ elif in_cluster:
350
+ # This is the outer log
351
+ in_cluster = False
352
+ log_end = i
353
+ cluster_output = logs[log_end]
354
+ next_module = in_out_names.split('->')[1].strip()
355
+ cluster_log = f"{cluster_name} -> {next_module}\n: {cluster_output}"
356
+ logs = logs[:log_start] + [cluster_log] + logs[log_end+1:]
357
+ print('Final logs:', logs)
358
+ return logs
359
+
360
+
361
+
362
+
363
+ def get_data(self):
364
+ return self.dataset[self.data_index]
365
+
366
+ def write(self):
367
+ '''Default writing'''
368
+ llm_token_used = self.llm.token_used
369
+ write_down = {'data':self.get_data(), 'doc_cache':self.doc_cache.show_docs(), 'log': self.log.copy(),'output':self.output,'result': self.result,'token_used':llm_token_used}
370
+
371
+ if self.attributer:
372
+ self.attributer.attribute_for_result(write_down)
373
+
374
+ with open(self.save_path, 'a', encoding='utf-8') as file:
375
+ json_line = json.dumps(write_down, indent=4)
376
+ file.write(json_line + '\n')
377
+
378
+ def get_module_by_name(self, name):
379
+ print('Getting module by name:', name)
380
+ for module in self.module:
381
+ if str(module) == name:
382
+ return module
383
+ if str(self.llm) == name:
384
+ return self.llm
385
+
386
+ for cluster in self.stored_clusters:
387
+ print('trying cluster:', cluster)
388
+ if str(cluster) == name:
389
+ print('found cluster:', cluster)
390
+ return cluster
391
+
392
+ return None
393
+
394
+ def export_training_data(self):
395
+ flattened_data = [flatten_dict(self.result)]
396
+ header = set()
397
+ for item in flattened_data:
398
+ header.update(item.keys())
399
+ header = sorted(header)
400
+ with open('output.csv', mode='a', newline='') as file:
401
+ writer = csv.DictWriter(file, fieldnames = header)
402
+ if self.table_head:
403
+ writer.writeheader()
404
+ self.table_head = False
405
+
406
+ for row in flattened_data:
407
+ writer.writerow(row)
408
+
409
+
410
+ def __str__(self) -> str:
411
+ return 'pipeline output'
412
+
413
+ class Sequence(Pipeline):
414
+ def __init__(self, save_path=None, sequence=None, head_prompt_maker=None, retriever=None, evaluator=None, dataset=None, rich_eval=False) -> None:
415
+ first_module = sequence[0]
416
+ other = sequence[1:]
417
+ super().__init__(save_path, sequence, head_prompt_maker, first_module, other, retriever, evaluator, dataset, rich_eval)
418
+ for i in range(len(sequence)-1):
419
+ module = sequence[i]
420
+ assert isinstance(module, Module) or isinstance(module,AugmentCluster)
421
+ module.set_target(sequence[i+1],post_processing=lambda x: {module.output_as: x})
422
+ sequence[-1].set_output()
423
+
citekit/prompt/__pycache__/prompt.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
citekit/prompt/__pycache__/prompt.cpython-312.pyc ADDED
Binary file (15.2 kB). View file
 
citekit/prompt/prompt.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+
4
+ truncate = lambda x, l: x[:l]
5
+ token_len = len
6
+
7
+ def combine(*args):
8
+ if all([isinstance(arg,dict) for arg in args]):
9
+ if len(args) == 1:
10
+ return args[0]
11
+ else:
12
+ combined = args[0].copy()
13
+ combined.update(combine(*args[1:]))
14
+ return combined
15
+
16
+ default_get = lambda key : lambda data: data[key]
17
+
18
+
19
+
20
+ class Prompt:
21
+ components = {}
22
+ template = ""
23
+ truncate = lambda x, l: x[:l]
24
+ UNABLE = 'prompt_unable'
25
+
26
+
27
+ def update(self, **kargs):
28
+ try:
29
+ for key in kargs.keys():
30
+ if key == 'template':
31
+ arg_template = kargs[key]
32
+
33
+ if key == 'components':
34
+ arg_components = kargs[key]
35
+ test_prompt = Prompt(arg_template, arg_components)
36
+ except Exception as e:
37
+ print(e)
38
+ print('Update Rejected due to invalid template or components')
39
+ return
40
+
41
+ self.template = arg_template
42
+ self.components = arg_components
43
+
44
+ def __init__(self,template='', components={}, max_token=8000) -> None:
45
+
46
+ '''
47
+ Args:
48
+ template: The way to order and organize each components, use <NAME> to represent a component, <C1><C2>...<Cn>.
49
+ components: The content of a component, use {NAME} to represent the placeholder of corresponding data
50
+ max_token: a list as long as components, representing the max number of tokens for each component, or a int representing the same max_token for all components
51
+ '''
52
+
53
+ # template
54
+ self.template = template
55
+
56
+ # components
57
+ if isinstance(components,dict):
58
+ for key in components.keys():
59
+ if f'<{str(key)}>' not in self.template:
60
+ raise Exception('component name not in template!')
61
+ self.components = components
62
+
63
+ # max_token
64
+ self.max_token = {}
65
+ if isinstance(max_token,list):
66
+ if len(components)==len(max_token):
67
+ self.max_token = {att:val for (att,val) in zip(components.keys(),max_token)}
68
+ else:
69
+ raise Exception('max_token is not corresponding to components')
70
+ elif isinstance(max_token,int):
71
+ self.max_token_init = max_token
72
+ self.max_token = {att:max_token for att in components}
73
+ else:
74
+ raise TypeError('max_token should be int or list')
75
+
76
+ def __repr__(self) -> str:
77
+ prompt = self.template
78
+ for key in self.components.keys():
79
+ prompt = prompt.replace(f'<{str(key)}>',self.components[key])
80
+ return prompt
81
+
82
+ def __str__(self) -> str:
83
+ return repr(self)
84
+
85
+ def part_template(self,**kargs):
86
+ '''
87
+ Add components in to the prompt.
88
+ '''
89
+ for part in kargs.keys():
90
+ if f'<{str(part)}>' in self.template:
91
+ self.components[part] = kargs[part]
92
+ else:
93
+ raise Exception('component name not in template!')
94
+
95
+ def __call__(self, *args,**kargs) -> str:
96
+ return self.make_prompt(*args, **kargs)
97
+
98
+
99
+ def __str__(self):
100
+
101
+ input = {}
102
+ for key in self.components.keys():
103
+ input[key] = self.components[key]
104
+
105
+
106
+ return self.make_prompt(input)
107
+
108
+
109
+ def make_prompt(self,*args,**kargs) -> str:
110
+ '''
111
+ arg: a dictionary containing all contents to the placeholder of the prompt
112
+ kargs: use NAME=value to pass arguments
113
+ '''
114
+
115
+ if args:
116
+ args = combine(*args)
117
+ args = args.copy()
118
+ args.update(kargs)
119
+ else:
120
+ args = kargs
121
+ prompt = self.template
122
+
123
+ for key in self.components.keys():
124
+ if key not in args or args[key] == Prompt.UNABLE:
125
+ prompt = prompt.replace(f'<{str(key)}>',"")
126
+ else:
127
+ prompt = prompt.replace(f'<{str(key)}>', self.components[key])
128
+
129
+ prompt_args = {}
130
+ for key in args.keys():
131
+ if key in self.components.keys():
132
+ if self.max_token.get(key):
133
+ max_token = self.max_token.get(key)
134
+ else:
135
+ max_token = min(4096,self.max_token_init)
136
+ if token_len(args[key])> max_token:
137
+ args[key] = self.truncate(args[key],max_token)
138
+
139
+
140
+ return prompt.format(**args)
141
+
142
+ def set_max_token(self,**kargs) -> None:
143
+ for key in kargs.keys():
144
+ if key in self.components.keys():
145
+ self.max_token[key] = kargs.get(key)
146
+ else:
147
+ raise KeyError(f'{key} not in Template!')
148
+
149
+ def load_data(self,data_loader,*keys,**projections):
150
+ '''
151
+ load data to make prompts from a data loader
152
+ projections: the function to get the information from a data.
153
+ '''
154
+
155
+ prompts = []
156
+ for data in data_loader:
157
+ l_contents = {key:default_get(key)(data) for key in keys}
158
+ d_contents = {projection:projections[projection](data) for projection in projections.keys()}
159
+ prompts.append(self.make_prompt({**l_contents, **d_contents}))
160
+
161
+ return prompts
162
+
163
+
164
+
165
+
166
+
167
+ class DocPrompt(Prompt):
168
+ '''
169
+ Containing Doc ID, Title and Passage in order:
170
+
171
+ Document:[{ID}]
172
+ (Title:{Title})
173
+ {Passage}
174
+ '''
175
+ def __init__(self, template='<ID><Title><Passage>', components={'ID':'Document[{ID}]: ','Title':'(Title:{Title})','Passage':'{Passage}\n'}, max_token=4096) -> None:
176
+ super().__init__(template, components, max_token)
177
+
178
+
179
+ class ALCEDocPrompt(Prompt):
180
+ '''
181
+ Containing Doc ID, Title and Passage in order:
182
+
183
+ Document:[{ID}]
184
+ (Title:{Title})
185
+ {Passage}
186
+ '''
187
+ def __init__(self, template='<ID><title><text>', components={'ID':'Document [{ID}]','title':'(Title:{title}): ','text':'{text}\n'}, max_token=4096) -> None:
188
+ super().__init__(template, components, max_token)
189
+
190
+ def default_load_data(self,data_loader, text = 'text', from_idx = 0):
191
+ return super().load_data(list(enumerate(data_loader)),text = lambda data: data[1][text],ID = lambda data: str(data[0]+1 + from_idx),title = lambda data: data[1]['title'])
192
+
193
+ def default_load_data_wo_ID(self,data_loader):
194
+ return super().load_data(list(enumerate(data_loader)),text = lambda data: data[1]['text'],title = lambda data: data[1]['title'])
195
+ def default_load_data_wo_title(self,data_loader):
196
+ return super().load_data(list(enumerate(data_loader)),text = lambda data: data[1]['text'],ID = lambda data: str(data[0]+1))
197
+ def default_load_data_extraction(self,data_loader):
198
+ return super().load_data(list(enumerate(data_loader)),text = lambda data: data[1]['extraction'],ID = lambda data: str(data[0]+1),title = lambda data: data[1]['title'])
199
+ def default_load_data_summary(self,data_loader):
200
+ return super().load_data(list(enumerate(data_loader)),text = lambda data: data[1]['summary'],ID = lambda data: str(data[0]+1),title = lambda data: data[1]['title'])
201
+
202
+ class ALCEVanillaPrompt(Prompt):
203
+ '''
204
+ Containing INST(Instruction), Question, Doc and Answer in order:
205
+
206
+ {INST}
207
+
208
+ Question:{Question}
209
+
210
+ {Doc}
211
+ Answer:{Answer}
212
+ '''
213
+ def __init__(self,
214
+ template="<INST><Question><Doc><Answer>\n",
215
+ components={'INST':'{INST}\n\n', 'Question':'Question:{Question}\n\n','Doc':'{Doc}\n','Answer':'Answer:{Answer}'},
216
+ max_token=4096) -> None:
217
+ super().__init__(template, components, max_token)
218
+
219
+ class NewALCEVanillaPrompt(Prompt):
220
+ '''
221
+ Containing INST(Instruction), Question, Doc and Answer in order:
222
+
223
+ {INST}
224
+
225
+ Question:{Question}
226
+
227
+ {Doc}
228
+ Answer:{Answer}
229
+ '''
230
+ def __init__(self,
231
+ template="<INST><question><docs><answer>\n",
232
+ components={'INST':'{INST}\n\n', 'question':'Question:{question}\n\n','docs':'{docs}\n','answer':'Answer:{answer}'},
233
+ max_token=4096) -> None:
234
+ super().__init__(template, components, max_token)
235
+
236
+
237
+
238
+ class AGEEPrompt(Prompt):
239
+ '''
240
+ Containing INST(Instruction), Question and Doc in order:
241
+
242
+ {INST}
243
+
244
+ Question:{Question}
245
+
246
+ Search Results:{Doc}
247
+ '''
248
+ def __init__(self,
249
+ template="<INST><Question><Doc>\n",
250
+ components={'INST':'{INST}\n\n', 'Question':'Question:\n{Question}\n','Doc':'Search Results:\n{Doc}\n'},
251
+ max_token=4096) -> None:
252
+ super().__init__(template, components, max_token)
253
+
254
+
255
+
256
+
257
+ alce_prompt= ALCEVanillaPrompt()
258
+ #alce_prompt.set_max_token(INST = 10,Doc = 100,Answer = 15)
259
+ DocP= DocPrompt()
260
+
261
+
262
+ #print(content['demos'])
263
+
264
+
265
+ #print(data[0])
266
+ '''
267
+ pps = alce_prompt.load_data(content['demos'],
268
+ INST = lambda _: content['instruction'],
269
+ Question = lambda data: data['question'],
270
+ Doc = lambda data: ''.join(DocPrompt().load_data(list(enumerate(data['docs'])),
271
+ ID = lambda data: str(data[0]),
272
+ Title = lambda data: data[1]['title'],
273
+ Passage = lambda data: data[1]['text'])),
274
+ Answer = lambda data: data['answer'])
275
+
276
+ '''
277
+
278
+ #print(pps[0])
279
+
280
+ '''
281
+ data_loader = []
282
+ with open('data.txt','r',encoding='utf-8') as f:
283
+ content = f.readlines()
284
+ for i,c in enumerate(content):
285
+ if i%3 == 0:
286
+ data_loader.append({'Q':c.strip(),'A':content[i+1].strip()})
287
+ print(data_loader)
288
+
289
+
290
+ pps = Dp.load_data(data_loader,
291
+ INST= lambda data: "Instruction: Write an accurate, engaging, and concise answer for the given question",
292
+ Question= lambda data: data['Q'],
293
+ Answer= lambda data: data['A'])
294
+ '''
citekit/utils/__pycache__/utils.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
citekit/utils/__pycache__/utils.cpython-312.pyc ADDED
Binary file (17.2 kB). View file
 
citekit/utils/utils.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import string
3
+ import re
4
+ import collections
5
+ import torch
6
+ import nltk
7
+
8
+ def one_paragraph(text):
9
+ paras = text.lstrip('\n').split('\n\n')
10
+ if not paras:
11
+ return ''
12
+ else:
13
+ return paras[0].rstrip('\n')
14
+
15
+ def strong_one_paragraph(text):
16
+ paras = text.lstrip('\n').split('\n')
17
+ if not paras:
18
+ return ''
19
+ else:
20
+ return paras[0].rstrip('\n')
21
+
22
+ def compute_str_em(data):
23
+ """Compute STR-EM metric (only for ASQA)
24
+ Args:
25
+ data: requires field `qa_pairs/short_answers` and `output`
26
+ Returns:
27
+ STR-EM and STR-EM-HIT ()
28
+ """
29
+ if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
30
+ return 0
31
+
32
+ acc = []
33
+ hit = []
34
+
35
+ for item in data:
36
+ loc_acc = []
37
+ for qa_pair in item['qa_pairs']:
38
+ loc_acc.append(exact_presence(qa_pair['short_answers'], item["output"]))
39
+ acc.append(np.mean(loc_acc))
40
+ hit.append(int(np.mean(loc_acc) == 1))
41
+
42
+ return 100 * np.mean(acc)
43
+ return 100 * np.mean(acc), 100 * np.mean(hit)
44
+
45
+ def average(func):
46
+ def avg_func(dataset):
47
+ print(len(dataset))
48
+ results = [func(*data) for data in dataset] if dataset else []
49
+ if results:
50
+ return np.mean(np.array(results), axis=0).tolist()
51
+ else:
52
+ return None
53
+ return avg_func
54
+
55
+ def normalize_answer(s):
56
+ def remove_articles(text):
57
+ return re.sub(r"\b(a|an|the)\b", " ", text)
58
+
59
+ def white_space_fix(text):
60
+ return " ".join(text.split())
61
+
62
+ def remove_punc(text):
63
+ exclude = set(string.punctuation)
64
+ return "".join(ch for ch in text if ch not in exclude)
65
+
66
+ def lower(text):
67
+ return text.lower()
68
+
69
+ return white_space_fix(remove_articles(remove_punc(lower(s))))
70
+
71
+ def compute_f1(a_gold, a_pred):
72
+ """Compute F1 score between two strings."""
73
+
74
+ def _get_tokens(s):
75
+ if not s:
76
+ return []
77
+ return normalize_answer(s).split()
78
+
79
+ gold_toks = _get_tokens(a_gold)
80
+ pred_toks = _get_tokens(a_pred)
81
+
82
+ common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
83
+ num_same = sum(common.values())
84
+
85
+ if len(gold_toks) == 0 or len(pred_toks) == 0:
86
+ # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
87
+ return int(gold_toks == pred_toks)
88
+
89
+ if num_same == 0:
90
+ return 0
91
+
92
+ precision = 1.0 * num_same / len(pred_toks)
93
+ recall = 1.0 * num_same / len(gold_toks)
94
+ f1 = (2 * precision * recall) / (precision + recall)
95
+
96
+ return f1
97
+
98
+
99
+ def compute_exact(a_gold, a_pred):
100
+ """Check whether two strings are equal up to normalization."""
101
+
102
+ return int(normalize_answer(a_gold) == normalize_answer(a_pred))
103
+
104
+
105
+ def exact_presence(short_answers, context):
106
+ """Verify if any of the answers is present in the given context.
107
+ Args:
108
+ short_answers: list of short answers to look for in the context
109
+ context: a paragraph to search for short answers
110
+ Returns:
111
+ true if any of the short answers is present in the context
112
+ """
113
+
114
+ n_short_answers = [normalize_answer(sa) for sa in short_answers]
115
+ n_context = normalize_answer(context)
116
+
117
+ for ans in n_short_answers:
118
+ if ans in n_context:
119
+ return True
120
+
121
+ return False
122
+
123
+ def output_begin_with(word):
124
+ def f(self) -> bool:
125
+ return self.last_message.strip().lower()[:len(word)] == word
126
+ return f
127
+
128
+ def output_end_with(word):
129
+ def f(self) -> bool:
130
+ return strong_one_paragraph(self.last_message.strip())[-len(word):] == word
131
+ return f
132
+
133
+
134
+ def make_as(datakey):
135
+ def f(passage):
136
+ return {datakey:passage}
137
+ return f
138
+
139
+ def cut_and_make_as(datakey):
140
+ def f(passage):
141
+ return {datakey:one_paragraph(passage)}
142
+ return f
143
+
144
+ def remove_citations(sent):
145
+ return re.sub(r"{\d+", "", re.sub(r" {\d+", "", sent)).replace(" |", "").replace("}", "").replace("{", "")
146
+
147
+ def remove_citations(sent):
148
+ return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", "")
149
+
150
+
151
+ def match_document(ref_mark, output_ref_span):
152
+ ref = set()
153
+ ref_span = []
154
+ for num in ref_mark:
155
+ ref_str = str(num)
156
+ if ref_str in output_ref_span:
157
+ ref_parts = output_ref_span[ref_str].split("[")
158
+ if len(ref_parts) > 1:
159
+ ref_id_parts = ref_parts[1].split("]")
160
+ if len(ref_id_parts) > 0:
161
+ ref_id = ref_id_parts[0].strip()
162
+ if ref_id.isdigit():
163
+ ref.add(int(ref_id)) # 添加Document id
164
+
165
+ ref_span_parts = output_ref_span[ref_str].split(":",1)#第一个冒号后面的片段
166
+ if len(ref_span_parts) > 1:
167
+ ref_span.append(ref_span_parts[1].strip()) # 添加后面的句子片段
168
+ else:
169
+ ref_span.append('')
170
+ return list(ref), ref_span
171
+
172
+ def get_max_memory():
173
+ """Get the maximum memory available for the current GPU for loading models."""
174
+ free_in_GB = int(torch.cuda.mem_get_info()[0]/1024**3)
175
+ max_memory = f'{free_in_GB-6}GB'
176
+ n_gpus = torch.cuda.device_count()
177
+ max_memory = {i: max_memory for i in range(n_gpus)}
178
+ return max_memory
179
+
180
+ def each_make_as(key):
181
+ def function(output):
182
+ sents = nltk.sent_tokenize(one_paragraph(output))
183
+ if len(sents)>3:
184
+ sents = sents[:3]
185
+ return [make_as(key)(sent) for sent in sents]
186
+ return function
187
+
188
+ def each_par_make_as(key):
189
+ def function(output):
190
+ sents = one_paragraph(output).split('\n')
191
+ if len(sents)>3:
192
+ sents = sents[:3]
193
+ return [make_as(key)(sent) for sent in sents]
194
+ return function
195
+
196
+ def sentence(key):
197
+ def function(output):
198
+ sents = nltk.sent_tokenize(one_paragraph(output))
199
+ for sent in sents:
200
+ refs = re.findall(r'\[\d+\]', sent)
201
+ if refs:
202
+ return make_as(key)(sent)
203
+ return make_as(key)('')
204
+ return function
205
+
206
+ def sentences(key):
207
+ def function(output):
208
+ sents = nltk.sent_tokenize(one_paragraph(output))
209
+ return [make_as(key)(sent) for sent in sents][:1]
210
+ return function
211
+
212
+ def three_sentences(key):
213
+ def function(output):
214
+ sents = nltk.sent_tokenize(one_paragraph(output))
215
+ return [make_as(key)(sent) for sent in sents][:3]
216
+ return function
217
+
218
+ def first_sentence(text):
219
+ sents = nltk.sent_tokenize(one_paragraph(text))
220
+ for sent in sents:
221
+ return sent
222
+ return ''
223
+
224
+ def flatten_dict(d, parent_key='', sep='_'):
225
+ items = []
226
+ for k, v in d.items():
227
+ new_key = f'{parent_key}{sep}{k}' if parent_key else k
228
+ if isinstance(v, dict):
229
+ items.extend(flatten_dict(v, new_key, sep=sep).items())
230
+ else:
231
+ items.append((new_key, v))
232
+ return dict(items)
233
+
234
+
235
+
236
+ import re
237
+ from bs4 import BeautifulSoup
238
+
239
+ def parse_html_prompt(input_str):
240
+ soup = BeautifulSoup(input_str, "html.parser")
241
+
242
+ # 处理 <p></p> 内的内容
243
+ p_content = soup.find("p").decode_contents().replace("<br>", "\n")
244
+ p_content = re.sub(r'<span[^>]*>(.*?)</span>', r'<\1>', p_content)
245
+ template = p_content.strip().replace(' <br/>', '').replace(' ', '').replace('<br/>', '')
246
+
247
+ # 解析 component-item
248
+ components = {}
249
+ for item in soup.find_all("div", class_="component-item"):
250
+ key_span = item.find("div", class_="component-key").find("span")
251
+ key = key_span.get_text(strip=True) if key_span else ""
252
+ value_div = item.find("div", class_="component-value")
253
+ value_content = value_div.decode_contents()
254
+ value_content = re.sub(r'<span[^>]*>(.*?)</span>', r'{\1}', value_content)
255
+ components[key] = value_content.strip().replace(' <br/>', '').replace('<br/>', '')
256
+
257
+ # 解析 self-info-item
258
+ self_prompt = {}
259
+ for item in soup.find_all("div", class_="self-info-item"):
260
+ key_span = item.find("div", class_="component-key").find("span")
261
+ key = key_span.get_text(strip=True) if key_span else ""
262
+ value_div = item.find("div", class_="component-value")
263
+ value = value_div.get_text(strip=True) if value_div else ""
264
+ self_prompt[key] = value.replace(' <br/>', '').replace('<br/>', '')
265
+
266
+ return {
267
+ 'template': template,
268
+ 'components': components,
269
+ 'self_prompt': self_prompt
270
+ }
271
+
272
+
273
+ def parse_html_destination(input_str):
274
+ soup = BeautifulSoup(input_str, "html.parser")
275
+ destination = soup.find("destination").get_text(strip=True)
276
+ prompt_key = soup.find("prompt_key").get_text(strip=True)
277
+ return destination, prompt_key
278
+
279
+ def parse_html_new_model(input_str):
280
+ soup = BeautifulSoup(input_str, "html.parser")
281
+ model_type = soup.find("model_type").get_text(strip=True)
282
+ model_name = soup.find("model").get_text(strip=True)
283
+ key = soup.find("prompt_key").get_text(strip=True)
284
+ return model_type, model_name, key
285
+
286
+ def parse_delete_destination(input_str):
287
+ soup = BeautifulSoup(input_str, "html.parser")
288
+ destination = soup.find("deletedestination").get_text(strip=True)
289
+ return destination
290
+
291
+ def parse_html_header(input_str):
292
+ soup = BeautifulSoup(input_str, "html.parser")
293
+ header = soup.find("to_head").get_text(strip=True)
294
+ return header
295
+
296
+ def parse_html_config(info):
297
+ config = ''
298
+ if 'class="component-value"' in info:
299
+ func = parse_html_prompt
300
+ config = 'prompt'
301
+ elif '</destination>' in info:
302
+ func = parse_html_destination
303
+ config = 'destination'
304
+ elif '<model_type>' in info:
305
+ func = parse_html_new_model
306
+ config = 'new_model'
307
+ elif 'deletedestination' in info:
308
+ config = 'delete_destination'
309
+ func = parse_delete_destination
310
+ elif 'to_head' in info:
311
+ config = 'header'
312
+ func = parse_html_header
313
+ else:
314
+ raise NotImplementedError
315
+ result = func(info)
316
+ print(info, 'parsed as', config)
317
+ return config, result
context_cite/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .context_citer import ContextCiter
2
+
3
+ __version__ = "0.0.1"
4
+ VERSION = __version__
context_cite/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (259 Bytes). View file
 
context_cite/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (233 Bytes). View file
 
context_cite/__pycache__/context_citer.cpython-312.pyc ADDED
Binary file (18.3 kB). View file
 
context_cite/__pycache__/context_citer.cpython-39.pyc ADDED
Binary file (13.5 kB). View file
 
context_cite/__pycache__/context_partitioner.cpython-312.pyc ADDED
Binary file (5.83 kB). View file
 
context_cite/__pycache__/context_partitioner.cpython-39.pyc ADDED
Binary file (4.6 kB). View file
 
context_cite/__pycache__/solver.cpython-312.pyc ADDED
Binary file (2.88 kB). View file
 
context_cite/__pycache__/solver.cpython-39.pyc ADDED
Binary file (2.22 kB). View file
 
context_cite/__pycache__/utils.cpython-312.pyc ADDED
Binary file (11 kB). View file