import torch import torch.nn as nn import torch.nn.functional as F from torch.amp import autocast from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig from peft import LoraConfig, get_peft_model import os hf_token = os.getenv("HF_TOKEN") class BidirectionalLlamaAttention(nn.Module): def __init__(self, original_layer, masking='unidirectional'): super().__init__() self.original = original_layer self.masking = masking self.q_proj = original_layer.q_proj self.k_proj = original_layer.k_proj self.v_proj = original_layer.v_proj self.o_proj = original_layer.o_proj self.head_dim = self.q_proj.out_features // original_layer.num_heads self.num_heads = original_layer.num_heads self.num_key_value_groups = original_layer.num_key_value_groups self.attention_dropout = original_layer.attention_dropout self.layer_idx = original_layer.layer_idx self.scaling = original_layer.scaling def forward(self, hidden_states, position_embeddings, attention_mask=None, past_key_value=None, cache_position=None, **kwargs): bsz, seq_len, _ = hidden_states.size() query_states = self._split_heads(self.q_proj(hidden_states)) key_states = self._split_heads(self.k_proj(hidden_states)) value_states = self._split_heads(self.v_proj(hidden_states)) cos, sin = position_embeddings query_states, key_states = self._apply_rotary(query_states, key_states, cos, sin) if self.masking == 'bidirectional': attn_mask = torch.ones((bsz, 1, seq_len, seq_len), device=hidden_states.device) else: attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device)).unsqueeze(0).unsqueeze(0) attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) * self.scaling attn_weights = attn_weights + attn_mask.log() attn_weights = F.softmax(attn_weights, dim=-1) attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = self._merge_heads(attn_output) return self.o_proj(attn_output), attn_weights def _split_heads(self, x): return x.view(x.size(0), x.size(1), self.num_heads, self.head_dim).transpose(1, 2) def _merge_heads(self, x): return x.transpose(1, 2).contiguous().view(x.size(0), -1, self.num_heads * self.head_dim) def _apply_rotary(self, q, k, cos, sin): cos = cos.unsqueeze(1) sin = sin.unsqueeze(1) q_rot = (q * cos) + (self._rotate_half(q) * sin) k_rot = (k * cos) + (self._rotate_half(k) * sin) return q_rot, k_rot def _rotate_half(self, x): x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) class CustomTransformerConfig(PretrainedConfig): def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.dropout = dropout self.prediction_chunk = prediction_chunk self.max_position_embeddings = max_position_embeddings class CustomTransformerModel(PreTrainedModel): config_class = CustomTransformerConfig def __init__(self, config): super().__init__(config) self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, token=hf_token) self.llama.resize_token_embeddings(config.vocab_size) for i, layer in enumerate(self.llama.model.layers): layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional') for param in self.llama.parameters(): param.requires_grad = False for param in self.llama.lm_head.parameters(): param.requires_grad = True lora_config = LoraConfig( r=256, lora_alpha=256, lora_dropout=0.0, target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], bias="none", task_type=None ) self.llama = get_peft_model(self.llama, lora_config) self.llama = self.llama.to(torch.float16) def forward(self, input_ids, labels=None, **kwargs): batch_size, seq_length = input_ids.shape assert seq_length == self.config.prediction_chunk with autocast("cuda", dtype=torch.float16): outputs = self.llama(input_ids=input_ids, output_hidden_states=True, **kwargs) logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, self.config.prediction_chunk, self.config.vocab_size) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} def disable_dropout(model): for name, module in model.named_modules(): if isinstance(module, nn.Dropout): setattr(model, name, nn.Identity()) return model