File size: 9,465 Bytes
8d272fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
Configuration for data processing in LLaVA.
"""

from dataclasses import dataclass, field
from typing import Optional, List, Dict, Any


@dataclass
class DatasetConfig:
    """Configuration for a dataset."""
    name: str
    path: str
    image_folder: str
    annotation_file: str
    split: str = "train"
    max_samples: int = -1  # -1 means use all samples
    image_key: str = "image"
    caption_key: str = "caption"
    question_key: str = "question"
    answer_key: str = "answer"


@dataclass
class PretrainingDataConfig:
    """Configuration for pretraining data."""
    datasets: List[DatasetConfig] = field(default_factory=list)
    image_size: int = 336
    max_length: int = 2048
    pad_to_max_length: bool = False
    preprocessing_num_workers: int = 4
    overwrite_cache: bool = False
    
    @classmethod
    def default(cls) -> "PretrainingDataConfig":
        """Create a default pretraining data configuration."""
        return cls(
            datasets=[
                DatasetConfig(
                    name="laion-cc-sbu-558k",
                    path="liuhaotian/LLaVA-Pretrain",
                    image_folder="",
                    annotation_file="blip_laion_cc_sbu_558k.json",
                    image_key="image",
                    caption_key="caption"
                )
            ]
        )


@dataclass
class InstructionTuningDataConfig:
    """Configuration for instruction tuning data."""
    datasets: List[DatasetConfig] = field(default_factory=list)
    image_size: int = 336
    max_length: int = 2048
    pad_to_max_length: bool = False
    preprocessing_num_workers: int = 4
    overwrite_cache: bool = False
    
    @classmethod
    def default(cls) -> "InstructionTuningDataConfig":
        """Create a default instruction tuning data configuration."""
        return cls(
            datasets=[
                DatasetConfig(
                    name="llava-instruct-150k",
                    path="liuhaotian/LLaVA-Instruct-150K",
                    image_folder="",
                    annotation_file="llava_instruct_150k.json",
                    image_key="image",
                    question_key="question",
                    answer_key="answer"
                )
            ]
        )


@dataclass
class EvaluationDataConfig:
    """Configuration for evaluation data."""
    datasets: List[DatasetConfig] = field(default_factory=list)
    image_size: int = 336
    max_length: int = 2048
    pad_to_max_length: bool = False
    preprocessing_num_workers: int = 4
    
    @classmethod
    def default(cls) -> "EvaluationDataConfig":
        """Create a default evaluation data configuration."""
        return cls(
            datasets=[
                DatasetConfig(
                    name="vqav2",
                    path="",
                    image_folder="coco/val2014",
                    annotation_file="vqav2_val.json",
                    split="val",
                    question_key="question",
                    answer_key="answer"
                ),
                DatasetConfig(
                    name="gqa",
                    path="",
                    image_folder="gqa/images",
                    annotation_file="gqa_testdev_balanced.json",
                    split="testdev",
                    question_key="question",
                    answer_key="answer"
                ),
                DatasetConfig(
                    name="textvqa",
                    path="",
                    image_folder="textvqa/train_images",
                    annotation_file="textvqa_val.json",
                    split="val",
                    question_key="question",
                    answer_key="answer"
                )
            ]
        )


@dataclass
class DataConfig:
    """Configuration for all data processing."""
    pretraining: PretrainingDataConfig = field(default_factory=PretrainingDataConfig.default)
    instruction_tuning: InstructionTuningDataConfig = field(default_factory=InstructionTuningDataConfig.default)
    evaluation: EvaluationDataConfig = field(default_factory=EvaluationDataConfig.default)
    
    @classmethod
    def from_dict(cls, config_dict: Dict[str, Any]) -> "DataConfig":
        """Create a configuration from a dictionary."""
        # Process pretraining config
        pretraining_dict = config_dict.get("pretraining", {})
        pretraining_datasets = []
        for dataset_dict in pretraining_dict.get("datasets", []):
            pretraining_datasets.append(DatasetConfig(**dataset_dict))
        
        pretraining_config = PretrainingDataConfig(
            datasets=pretraining_datasets,
            **{k: v for k, v in pretraining_dict.items() if k != "datasets"}
        )
        
        # Process instruction tuning config
        instruction_dict = config_dict.get("instruction_tuning", {})
        instruction_datasets = []
        for dataset_dict in instruction_dict.get("datasets", []):
            instruction_datasets.append(DatasetConfig(**dataset_dict))
        
        instruction_config = InstructionTuningDataConfig(
            datasets=instruction_datasets,
            **{k: v for k, v in instruction_dict.items() if k != "datasets"}
        )
        
        # Process evaluation config
        evaluation_dict = config_dict.get("evaluation", {})
        evaluation_datasets = []
        for dataset_dict in evaluation_dict.get("datasets", []):
            evaluation_datasets.append(DatasetConfig(**dataset_dict))
        
        evaluation_config = EvaluationDataConfig(
            datasets=evaluation_datasets,
            **{k: v for k, v in evaluation_dict.items() if k != "datasets"}
        )
        
        # Create and return the configuration
        return cls(
            pretraining=pretraining_config,
            instruction_tuning=instruction_config,
            evaluation=evaluation_config
        )
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert the configuration to a dictionary."""
        # Process pretraining datasets
        pretraining_datasets = []
        for dataset in self.pretraining.datasets:
            pretraining_datasets.append({
                "name": dataset.name,
                "path": dataset.path,
                "image_folder": dataset.image_folder,
                "annotation_file": dataset.annotation_file,
                "split": dataset.split,
                "max_samples": dataset.max_samples,
                "image_key": dataset.image_key,
                "caption_key": dataset.caption_key,
                "question_key": dataset.question_key,
                "answer_key": dataset.answer_key
            })
        
        # Process instruction tuning datasets
        instruction_datasets = []
        for dataset in self.instruction_tuning.datasets:
            instruction_datasets.append({
                "name": dataset.name,
                "path": dataset.path,
                "image_folder": dataset.image_folder,
                "annotation_file": dataset.annotation_file,
                "split": dataset.split,
                "max_samples": dataset.max_samples,
                "image_key": dataset.image_key,
                "caption_key": dataset.caption_key,
                "question_key": dataset.question_key,
                "answer_key": dataset.answer_key
            })
        
        # Process evaluation datasets
        evaluation_datasets = []
        for dataset in self.evaluation.datasets:
            evaluation_datasets.append({
                "name": dataset.name,
                "path": dataset.path,
                "image_folder": dataset.image_folder,
                "annotation_file": dataset.annotation_file,
                "split": dataset.split,
                "max_samples": dataset.max_samples,
                "image_key": dataset.image_key,
                "caption_key": dataset.caption_key,
                "question_key": dataset.question_key,
                "answer_key": dataset.answer_key
            })
        
        # Create the configuration dictionary
        config_dict = {
            "pretraining": {
                "datasets": pretraining_datasets,
                "image_size": self.pretraining.image_size,
                "max_length": self.pretraining.max_length,
                "pad_to_max_length": self.pretraining.pad_to_max_length,
                "preprocessing_num_workers": self.pretraining.preprocessing_num_workers,
                "overwrite_cache": self.pretraining.overwrite_cache
            },
            "instruction_tuning": {
                "datasets": instruction_datasets,
                "image_size": self.instruction_tuning.image_size,
                "max_length": self.instruction_tuning.max_length,
                "pad_to_max_length": self.instruction_tuning.pad_to_max_length,
                "preprocessing_num_workers": self.instruction_tuning.preprocessing_num_workers,
                "overwrite_cache": self.instruction_tuning.overwrite_cache
            },
            "evaluation": {
                "datasets": evaluation_datasets,
                "image_size": self.evaluation.image_size,
                "max_length": self.evaluation.max_length,
                "pad_to_max_length": self.evaluation.pad_to_max_length,
                "preprocessing_num_workers": self.evaluation.preprocessing_num_workers
            }
        }
        
        return config_dict