Spaces:
Build error
Build error
import torch | |
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from IndicTransToolkit import IndicProcessor | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load model and tokenizer | |
model_name = "ai4bharat/indictrans2-indic-en-1B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True).to(DEVICE) | |
ip = IndicProcessor(inference=True) | |
def translate(text, src_lang="hin_Deva", tgt_lang="eng_Latn"): | |
input_sentences = [text] | |
batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang) | |
inputs = tokenizer(batch, padding="longest", return_tensors="pt", truncation=True).to(DEVICE) | |
with torch.no_grad(): | |
generated_tokens = model.generate( | |
**inputs, | |
use_cache=True, | |
min_length=0, | |
max_length=256, | |
num_beams=5, | |
num_return_sequences=1, | |
) | |
with tokenizer.as_target_tokenizer(): | |
generated_tokens = tokenizer.batch_decode( | |
generated_tokens.detach().cpu().tolist(), | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True, | |
) | |
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang) | |
return translations[0] | |
# Gradio UI and API | |
demo = gr.Interface( | |
fn=translate, | |
inputs="text", | |
outputs="text", | |
examples=[ | |
["जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।"], | |
["हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।"] | |
], | |
title="IndicTrans2 Translator", | |
description="Translate Indic languages to English using AI4Bharat's IndicTrans2 model" | |
) | |
demo.launch() | |