talk_to_data / app.py
PD03's picture
Update app.py
25e4074 verified
raw
history blame
2.06 kB
import gradio as gr
import pandas as pd
from transformers import pipeline
# 1) Load & stringify your CSV
df = pd.read_csv("synthetic_profit.csv")
table = df.astype(str).to_dict(orient="records")
# 2) Instantiate the TAPAS pipeline from Transformers
qa = pipeline(
"table-question-answering",
model="google/tapas-base-finetuned-wtq",
tokenizer="google/tapas-base-finetuned-wtq",
device=-1, # CPU; change to 0 if you have a GPU
)
# 3) Few-shot examples teach “filter + sum” vs. “filter + mean”
EXAMPLES = """
Example 1:
Q: What is the total revenue for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then sum Revenue → 3075162.49
Example 2:
Q: What is the total cost for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then sum Cost → 2894321.75
Example 3:
Q: What is the total margin for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then sum ProfitMargin → 0.18
Example 4:
Q: What is the average profit margin for Product A in EMEA in Q1 2024?
A: Filter Product=A & Region=EMEA & FiscalYear=2024 & FiscalQuarter=Q1, then mean ProfitMargin → 0.18
"""
def answer_question(question: str) -> str:
prompt = EXAMPLES + f"\nQ: {question}\nA:"
try:
result = qa(table=table, query=prompt)
return result.get("answer", "No answer found.")
except Exception as e:
return f"❌ Pipeline error:\n{e}"
# 4) Gradio UI
iface = gr.Interface(
fn=answer_question,
inputs=gr.Textbox(lines=2, placeholder="e.g. What is the total revenue for Product A in Q1 2024?"),
outputs=gr.Textbox(lines=3),
title="SAP Profitability Q&A",
description=(
"Ask simple sum/mean questions on the synthetic SAP data. \n"
"Powered by google/tapas-base-finetuned-wtq with four few-shot examples."
),
allow_flagging="never",
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)