#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import code import glob import imageio import numpy as np import os from pathlib import PurePosixPath from scipy.ndimage.filters import convolve1d import struct import sys from constants import * # Search for pyngp in the build folder. sys.path += [os.path.dirname(pyd) for pyd in glob.iglob(os.path.join(ROOT_DIR, "build*", "**/*.pyd"), recursive=True)] sys.path += [os.path.dirname(pyd) for pyd in glob.iglob(os.path.join(ROOT_DIR, "build*", "**/*.so"), recursive=True)] def repl(testbed): print("-------------------\npress Ctrl-Z to return to gui\n---------------------------") code.InteractiveConsole(locals=locals()).interact() print("------- returning to gui...") def mse2psnr(x): return -10.*np.log(x)/np.log(10.) def sanitize_path(path): return str(PurePosixPath(path.relative_to(PAPER_FOLDER))) # from https://stackoverflow.com/questions/31638651/how-can-i-draw-lines-into-numpy-arrays def trapez(y,y0,w): return np.clip(np.minimum(y+1+w/2-y0, -y+1+w/2+y0),0,1) def weighted_line(r0, c0, r1, c1, w, rmin=0, rmax=np.inf): # The algorithm below works fine if c1 >= c0 and c1-c0 >= abs(r1-r0). # If either of these cases are violated, do some switches. if abs(c1-c0) < abs(r1-r0): # Switch x and y, and switch again when returning. xx, yy, val = weighted_line(c0, r0, c1, r1, w, rmin=rmin, rmax=rmax) return (yy, xx, val) # At this point we know that the distance in columns (x) is greater # than that in rows (y). Possibly one more switch if c0 > c1. if c0 > c1: return weighted_line(r1, c1, r0, c0, w, rmin=rmin, rmax=rmax) # The following is now always < 1 in abs slope = (r1-r0) / (c1-c0) # Adjust weight by the slope w *= np.sqrt(1+np.abs(slope)) / 2 # We write y as a function of x, because the slope is always <= 1 # (in absolute value) x = np.arange(c0, c1+1, dtype=float) y = x * slope + (c1*r0-c0*r1) / (c1-c0) # Now instead of 2 values for y, we have 2*np.ceil(w/2). # All values are 1 except the upmost and bottommost. thickness = np.ceil(w/2) yy = (np.floor(y).reshape(-1,1) + np.arange(-thickness-1,thickness+2).reshape(1,-1)) xx = np.repeat(x, yy.shape[1]) vals = trapez(yy, y.reshape(-1,1), w).flatten() yy = yy.flatten() # Exclude useless parts and those outside of the interval # to avoid parts outside of the picture mask = np.logical_and.reduce((yy >= rmin, yy < rmax, vals > 0)) return (yy[mask].astype(int), xx[mask].astype(int), vals[mask]) def diagonally_truncated_mask(shape, x_threshold, angle): result = np.zeros(shape, dtype=bool) for x in range(shape[1]): for y in range(shape[0]): thres = x_threshold * shape[1] - (angle * shape[0] / 2) + y * angle result[y, x, ...] = x < thres return result def diagonally_combine_two_images(img1, img2, x_threshold, angle, gap=0, color=1): if img2.shape != img1.shape: raise ValueError(f"img1 and img2 must have the same shape; {img1.shape} vs {img2.shape}") mask = diagonally_truncated_mask(img1.shape, x_threshold, angle) result = img2.copy() result[mask] = img1[mask] if gap > 0: rr, cc, val = weighted_line(0, int(x_threshold * img1.shape[1] - (angle * img1.shape[0] / 2)), img1.shape[0]-1, int(x_threshold * img1.shape[1] + (angle * img1.shape[0] / 2)), gap) result[rr, cc, :] = result[rr, cc, :] * (1 - val[...,np.newaxis]) + val[...,np.newaxis] * color return result def diagonally_combine_images(images, x_thresholds, angle, gap=0, color=1): result = images[0] for img, thres in zip(images[1:], x_thresholds): result = diagonally_combine_two_images(result, img, thres, angle, gap, color) return result def write_image_imageio(img_file, img, quality): img = (np.clip(img, 0.0, 1.0) * 255.0 + 0.5).astype(np.uint8) kwargs = {} if os.path.splitext(img_file)[1].lower() in [".jpg", ".jpeg"]: if img.ndim >= 3 and img.shape[2] > 3: img = img[:,:,:3] kwargs["quality"] = quality kwargs["subsampling"] = 0 imageio.imwrite(img_file, img, **kwargs) def read_image_imageio(img_file): img = imageio.imread(img_file) img = np.asarray(img).astype(np.float32) if len(img.shape) == 2: img = img[:,:,np.newaxis] return img / 255.0 def srgb_to_linear(img): limit = 0.04045 return np.where(img > limit, np.power((img + 0.055) / 1.055, 2.4), img / 12.92) def linear_to_srgb(img): limit = 0.0031308 return np.where(img > limit, 1.055 * (img ** (1.0 / 2.4)) - 0.055, 12.92 * img) def read_image(file): if os.path.splitext(file)[1] == ".bin": with open(file, "rb") as f: bytes = f.read() h, w = struct.unpack("ii", bytes[:8]) img = np.frombuffer(bytes, dtype=np.float16, count=h*w*4, offset=8).astype(np.float32).reshape([h, w, 4]) else: img = read_image_imageio(file) if img.shape[2] == 4: img[...,0:3] = srgb_to_linear(img[...,0:3]) # Premultiply alpha img[...,0:3] *= img[...,3:4] else: img = srgb_to_linear(img) return img def write_image(file, img, quality=95): if os.path.splitext(file)[1] == ".bin": if img.shape[2] < 4: img = np.dstack((img, np.ones([img.shape[0], img.shape[1], 4 - img.shape[2]]))) with open(file, "wb") as f: f.write(struct.pack("ii", img.shape[0], img.shape[1])) f.write(img.astype(np.float16).tobytes()) else: if img.shape[2] == 4: img = np.copy(img) # Unmultiply alpha img[...,0:3] = np.divide(img[...,0:3], img[...,3:4], out=np.zeros_like(img[...,0:3]), where=img[...,3:4] != 0) img[...,0:3] = linear_to_srgb(img[...,0:3]) else: img = linear_to_srgb(img) write_image_imageio(file, img, quality) def trim(error, skip=0.000001): error = np.sort(error.flatten()) size = error.size skip = int(skip * size) return error[skip:size-skip].mean() def luminance(a): return 0.2126 * a[:,:,0] + 0.7152 * a[:,:,1] + 0.0722 * a[:,:,2] def SSIM(a, b): def blur(a): k = np.array([0.120078, 0.233881, 0.292082, 0.233881, 0.120078]) x = convolve1d(a, k, axis=0) return convolve1d(x, k, axis=1) a = luminance(a) b = luminance(b) mA = blur(a) mB = blur(b) sA = blur(a*a) - mA**2 sB = blur(b*b) - mB**2 sAB = blur(a*b) - mA*mB c1 = 0.01**2 c2 = 0.03**2 p1 = (2.0*mA*mB + c1)/(mA*mA + mB*mB + c1) p2 = (2.0*sAB + c2)/(sA + sB + c2) error = p1 * p2 return error def L1(img, ref): return np.abs(img - ref) def APE(img, ref): return L1(img, ref) / (1e-2 + ref) def SAPE(img, ref): return L1(img, ref) / (1e-2 + (ref + img) / 2.) def L2(img, ref): return (img - ref)**2 def RSE(img, ref): return L2(img, ref) / (1e-2 + ref**2) def rgb_mean(img): return np.mean(img, axis=2) def compute_error_img(metric, img, ref): img[np.logical_not(np.isfinite(img))] = 0 img = np.maximum(img, 0.) if metric == "MAE": return L1(img, ref) elif metric == "MAPE": return APE(img, ref) elif metric == "SMAPE": return SAPE(img, ref) elif metric == "MSE": return L2(img, ref) elif metric == "MScE": return L2(np.clip(img, 0.0, 1.0), np.clip(ref, 0.0, 1.0)) elif metric == "MRSE": return RSE(img, ref) elif metric == "MtRSE": return trim(RSE(img, ref)) elif metric == "MRScE": return RSE(np.clip(img, 0, 100), np.clip(ref, 0, 100)) elif metric == "SSIM": return SSIM(np.clip(img, 0.0, 1.0), np.clip(ref, 0.0, 1.0)) raise ValueError(f"Unknown metric: {metric}.") def compute_error(metric, img, ref): metric_map = compute_error_img(metric, img, ref) metric_map[np.logical_not(np.isfinite(metric_map))] = 0 if len(metric_map.shape) == 3: metric_map = np.mean(metric_map, axis=2) mean = np.mean(metric_map) return mean