Spaces:
Running
on
Zero
Running
on
Zero

Enhance is_arabic_text function: refine detection to focus on headers and paragraphs, excluding lists and code blocks
5d256ae
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
import fitz # PyMuPDF | |
import gradio as gr | |
import requests | |
import torch | |
from huggingface_hub import snapshot_download | |
from PIL import Image, ImageDraw, ImageFont | |
from qwen_vl_utils import process_vision_info | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
# Constants | |
MIN_PIXELS = 3136 | |
MAX_PIXELS = 11289600 | |
IMAGE_FACTOR = 28 | |
# Prompts | |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
1. Bbox format: [x1, y1, x2, y2] | |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
3. Text Extraction & Formatting Rules: | |
- Picture: For the 'Picture' category, the text field should be omitted. | |
- Formula: Format its text as LaTeX. | |
- Table: Format its text as HTML. | |
- All Others (Text, Title, etc.): Format their text as Markdown. | |
4. Constraints: | |
- The output text must be the original text from the image, with no translation. | |
- All layout elements must be sorted according to human reading order. | |
5. Final Output: The entire output must be a single JSON object. | |
""" | |
# Utility functions | |
def round_by_factor(number: int, factor: int) -> int: | |
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" | |
return round(number / factor) * factor | |
def smart_resize( | |
height: int, | |
width: int, | |
factor: int = 28, | |
min_pixels: int = 3136, | |
max_pixels: int = 11289600, | |
): | |
"""Rescales the image so that the following conditions are met: | |
1. Both dimensions (height and width) are divisible by 'factor'. | |
2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. | |
3. The aspect ratio of the image is maintained as closely as possible. | |
""" | |
if max(height, width) / min(height, width) > 200: | |
raise ValueError( | |
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" | |
) | |
h_bar = max(factor, round_by_factor(height, factor)) | |
w_bar = max(factor, round_by_factor(width, factor)) | |
if h_bar * w_bar > max_pixels: | |
beta = math.sqrt((height * width) / max_pixels) | |
h_bar = round_by_factor(height / beta, factor) | |
w_bar = round_by_factor(width / beta, factor) | |
elif h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar = round_by_factor(height * beta, factor) | |
w_bar = round_by_factor(width * beta, factor) | |
return h_bar, w_bar | |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None): | |
"""Fetch and process an image""" | |
if isinstance(image_input, str): | |
if image_input.startswith(("http://", "https://")): | |
response = requests.get(image_input) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_input).convert('RGB') | |
elif isinstance(image_input, Image.Image): | |
image = image_input.convert('RGB') | |
else: | |
raise ValueError(f"Invalid image input type: {type(image_input)}") | |
if min_pixels is not None or max_pixels is not None: | |
min_pixels = min_pixels or MIN_PIXELS | |
max_pixels = max_pixels or MAX_PIXELS | |
height, width = smart_resize( | |
image.height, | |
image.width, | |
factor=IMAGE_FACTOR, | |
min_pixels=min_pixels, | |
max_pixels=max_pixels | |
) | |
image = image.resize((width, height), Image.LANCZOS) | |
return image | |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]: | |
"""Load images from PDF file""" | |
images = [] | |
try: | |
pdf_document = fitz.open(pdf_path) | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
# Convert page to image | |
mat = fitz.Matrix(2.0, 2.0) # Increase resolution | |
pix = page.get_pixmap(matrix=mat) | |
img_data = pix.tobytes("ppm") | |
image = Image.open(BytesIO(img_data)).convert('RGB') | |
images.append(image) | |
pdf_document.close() | |
except Exception as e: | |
print(f"Error loading PDF: {e}") | |
return [] | |
return images | |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image: | |
"""Draw layout bounding boxes on image""" | |
img_copy = image.copy() | |
draw = ImageDraw.Draw(img_copy) | |
# Colors for different categories | |
colors = { | |
'Caption': '#FF6B6B', | |
'Footnote': '#4ECDC4', | |
'Formula': '#45B7D1', | |
'List-item': '#96CEB4', | |
'Page-footer': '#FFEAA7', | |
'Page-header': '#DDA0DD', | |
'Picture': '#FFD93D', | |
'Section-header': '#6C5CE7', | |
'Table': '#FD79A8', | |
'Text': '#74B9FF', | |
'Title': '#E17055' | |
} | |
try: | |
# Load a font | |
try: | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) | |
except Exception: | |
font = ImageFont.load_default() | |
for item in layout_data: | |
if 'bbox' in item and 'category' in item: | |
bbox = item['bbox'] | |
category = item['category'] | |
color = colors.get(category, '#000000') | |
# Draw rectangle | |
draw.rectangle(bbox, outline=color, width=2) | |
# Draw label | |
label = category | |
label_bbox = draw.textbbox((0, 0), label, font=font) | |
label_width = label_bbox[2] - label_bbox[0] | |
label_height = label_bbox[3] - label_bbox[1] | |
# Position label above the box | |
label_x = bbox[0] | |
label_y = max(0, bbox[1] - label_height - 2) | |
# Draw background for label | |
draw.rectangle( | |
[label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], | |
fill=color | |
) | |
# Draw text | |
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font) | |
except Exception as e: | |
print(f"Error drawing layout: {e}") | |
return img_copy | |
def is_arabic_text(text: str) -> bool: | |
"""Check if text in headers and paragraphs contains mostly Arabic characters""" | |
if not text: | |
return False | |
# Extract text from headers and paragraphs only | |
# Match markdown headers (# ## ###) and regular paragraph text | |
header_pattern = r'^#{1,6}\s+(.+)$' | |
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$' | |
content_text = [] | |
for line in text.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
# Check for headers | |
header_match = re.match(header_pattern, line, re.MULTILINE) | |
if header_match: | |
content_text.append(header_match.group(1)) | |
continue | |
# Check for paragraph text (exclude lists, tables, code blocks, images) | |
if re.match(paragraph_pattern, line, re.MULTILINE): | |
content_text.append(line) | |
if not content_text: | |
return False | |
# Join all content text and check for Arabic characters | |
combined_text = ' '.join(content_text) | |
# Arabic Unicode ranges | |
arabic_chars = 0 | |
total_chars = 0 | |
for char in combined_text: | |
if char.isalpha(): | |
total_chars += 1 | |
# Arabic script ranges | |
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'): | |
arabic_chars += 1 | |
if total_chars == 0: | |
return False | |
# Consider text as Arabic if more than 50% of alphabetic characters are Arabic | |
return (arabic_chars / total_chars) > 0.5 | |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str: | |
"""Convert layout JSON to markdown format""" | |
import base64 | |
from io import BytesIO | |
markdown_lines = [] | |
try: | |
# Sort items by reading order (top to bottom, left to right) | |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
for item in sorted_items: | |
category = item.get('category', '') | |
text = item.get(text_key, '') | |
bbox = item.get('bbox', []) | |
if category == 'Picture': | |
# Extract image region and embed it | |
if bbox and len(bbox) == 4: | |
try: | |
# Extract the image region | |
x1, y1, x2, y2 = bbox | |
# Ensure coordinates are within image bounds | |
x1, y1 = max(0, int(x1)), max(0, int(y1)) | |
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2)) | |
if x2 > x1 and y2 > y1: | |
cropped_img = image.crop((x1, y1, x2, y2)) | |
# Convert to base64 for embedding | |
buffer = BytesIO() | |
cropped_img.save(buffer, format='PNG') | |
img_data = base64.b64encode(buffer.getvalue()).decode() | |
# Add as markdown image | |
markdown_lines.append(f"\n") | |
else: | |
markdown_lines.append("\n") | |
except Exception as e: | |
print(f"Error processing image region: {e}") | |
markdown_lines.append("\n") | |
else: | |
markdown_lines.append("\n") | |
elif not text: | |
continue | |
elif category == 'Title': | |
markdown_lines.append(f"# {text}\n") | |
elif category == 'Section-header': | |
markdown_lines.append(f"## {text}\n") | |
elif category == 'Text': | |
markdown_lines.append(f"{text}\n") | |
elif category == 'List-item': | |
markdown_lines.append(f"- {text}\n") | |
elif category == 'Table': | |
# If text is already HTML, keep it as is | |
if text.strip().startswith('<'): | |
markdown_lines.append(f"{text}\n") | |
else: | |
markdown_lines.append(f"**Table:** {text}\n") | |
elif category == 'Formula': | |
# If text is LaTeX, format it properly | |
if text.strip().startswith('$') or '\\' in text: | |
markdown_lines.append(f"$$\n{text}\n$$\n") | |
else: | |
markdown_lines.append(f"**Formula:** {text}\n") | |
elif category == 'Caption': | |
markdown_lines.append(f"*{text}*\n") | |
elif category == 'Footnote': | |
markdown_lines.append(f"^{text}^\n") | |
elif category in ['Page-header', 'Page-footer']: | |
# Skip headers and footers in main content | |
continue | |
else: | |
markdown_lines.append(f"{text}\n") | |
markdown_lines.append("") # Add spacing | |
except Exception as e: | |
print(f"Error converting to markdown: {e}") | |
return str(layout_data) | |
return "\n".join(markdown_lines) | |
# Initialize model and processor at script level | |
model_id = "rednote-hilab/dots.ocr" | |
model_path = "./models/dots-ocr-local" | |
snapshot_download( | |
repo_id=model_id, | |
local_dir=model_path, | |
local_dir_use_symlinks=False, # Recommended to set to False to avoid symlink issues | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
processor = AutoProcessor.from_pretrained( | |
model_path, | |
trust_remote_code=True | |
) | |
# Global state variables | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# PDF handling state | |
pdf_cache = { | |
"images": [], | |
"current_page": 0, | |
"total_pages": 0, | |
"file_type": None, | |
"is_parsed": False, | |
"results": [] | |
} | |
def inference(image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str: | |
"""Run inference on an image with the given prompt""" | |
try: | |
if model is None or processor is None: | |
raise RuntimeError("Model not loaded. Please check model initialization.") | |
# Prepare messages in the expected format | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image | |
}, | |
{"type": "text", "text": prompt} | |
] | |
} | |
] | |
# Apply chat template | |
text = processor.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Process vision information | |
image_inputs, video_inputs = process_vision_info(messages) | |
# Prepare inputs | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# Move to device | |
inputs = inputs.to(device) | |
# Generate output | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False, | |
temperature=0.1 | |
) | |
# Decode output | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
) | |
return output_text[0] if output_text else "" | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
traceback.print_exc() | |
return f"Error during inference: {str(e)}" | |
def process_image( | |
image: Image.Image, | |
min_pixels: Optional[int] = None, | |
max_pixels: Optional[int] = None | |
) -> Dict[str, Any]: | |
"""Process a single image with the specified prompt mode""" | |
try: | |
# Resize image if needed | |
if min_pixels is not None or max_pixels is not None: | |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels) | |
# Run inference with the default prompt | |
raw_output = inference(image, prompt) | |
# Process results based on prompt mode | |
result = { | |
'original_image': image, | |
'raw_output': raw_output, | |
'processed_image': image, | |
'layout_result': None, | |
'markdown_content': None | |
} | |
# Try to parse JSON and create visualizations (since we're doing layout analysis) | |
try: | |
# Try to parse JSON output | |
layout_data = json.loads(raw_output) | |
result['layout_result'] = layout_data | |
# Create visualization with bounding boxes | |
try: | |
processed_image = draw_layout_on_image(image, layout_data) | |
result['processed_image'] = processed_image | |
except Exception as e: | |
print(f"Error drawing layout: {e}") | |
result['processed_image'] = image | |
# Generate markdown from layout data | |
try: | |
markdown_content = layoutjson2md(image, layout_data, text_key='text') | |
result['markdown_content'] = markdown_content | |
except Exception as e: | |
print(f"Error generating markdown: {e}") | |
result['markdown_content'] = raw_output | |
except json.JSONDecodeError: | |
print("Failed to parse JSON output, using raw output") | |
result['markdown_content'] = raw_output | |
return result | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
traceback.print_exc() | |
return { | |
'original_image': image, | |
'raw_output': f"Error processing image: {str(e)}", | |
'processed_image': image, | |
'layout_result': None, | |
'markdown_content': f"Error processing image: {str(e)}" | |
} | |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]: | |
"""Load file for preview (supports PDF and images)""" | |
global pdf_cache | |
if not file_path or not os.path.exists(file_path): | |
return None, "No file selected" | |
file_ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if file_ext == '.pdf': | |
# Load PDF pages | |
images = load_images_from_pdf(file_path) | |
if not images: | |
return None, "Failed to load PDF" | |
pdf_cache.update({ | |
"images": images, | |
"current_page": 0, | |
"total_pages": len(images), | |
"file_type": "pdf", | |
"is_parsed": False, | |
"results": [] | |
}) | |
return images[0], f"Page 1 / {len(images)}" | |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: | |
# Load single image | |
image = Image.open(file_path).convert('RGB') | |
pdf_cache.update({ | |
"images": [image], | |
"current_page": 0, | |
"total_pages": 1, | |
"file_type": "image", | |
"is_parsed": False, | |
"results": [] | |
}) | |
return image, "Page 1 / 1" | |
else: | |
return None, f"Unsupported file format: {file_ext}" | |
except Exception as e: | |
print(f"Error loading file: {e}") | |
return None, f"Error loading file: {str(e)}" | |
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]: | |
"""Navigate through PDF pages and update all relevant outputs.""" | |
global pdf_cache | |
if not pdf_cache["images"]: | |
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None | |
if direction == "prev": | |
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) | |
elif direction == "next": | |
pdf_cache["current_page"] = min( | |
pdf_cache["total_pages"] - 1, | |
pdf_cache["current_page"] + 1 | |
) | |
index = pdf_cache["current_page"] | |
current_image_preview = pdf_cache["images"][index] | |
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>' | |
# Initialize default result values | |
markdown_content = "Page not processed yet" | |
processed_img = None | |
layout_json = None | |
# Get results for current page if available | |
if (pdf_cache["is_parsed"] and | |
index < len(pdf_cache["results"]) and | |
pdf_cache["results"][index]): | |
result = pdf_cache["results"][index] | |
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available') | |
processed_img = result.get('processed_image', None) # Get the processed image | |
layout_json = result.get('layout_result', None) # Get the layout JSON | |
# Check for Arabic text to set RTL property | |
if is_arabic_text(markdown_content): | |
markdown_update = gr.update(value=markdown_content, rtl=True) | |
else: | |
markdown_update = markdown_content | |
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json | |
def create_gradio_interface(): | |
"""Create the Gradio interface""" | |
# Custom CSS | |
css = """ | |
.main-container { | |
max-width: 1400px; | |
margin: 0 auto; | |
} | |
.header-text { | |
text-align: center; | |
color: #2c3e50; | |
margin-bottom: 20px; | |
} | |
.process-button { | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
} | |
.process-button:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; | |
} | |
.info-box { | |
border: 1px solid #dee2e6; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.page-info { | |
text-align: center; | |
padding: 8px 16px; | |
border-radius: 20px; | |
font-weight: bold; | |
margin: 10px 0; | |
} | |
.model-status { | |
padding: 10px; | |
border-radius: 8px; | |
margin: 10px 0; | |
text-align: center; | |
font-weight: bold; | |
} | |
.status-ready { | |
background: #d1edff; | |
color: #0c5460; | |
border: 1px solid #b8daff; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Dots.OCR Demo") as demo: | |
# Header | |
gr.HTML(""" | |
<div class="title" style="text-align: center"> | |
<h1>🔍 Dot-OCR - Multilingual Document Text Extraction</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
A state-of-the-art image/pdf-to-markdown vision language model for intelligent document processing | |
</p> | |
<div style="display: flex; justify-content: center; gap: 20px; margin: 15px 0;"> | |
<a href="https://huggingface.co/rednote-hilab/dots.ocr" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;"> | |
📚 Hugging Face Model | |
</a> | |
<a href="https://github.com/rednote-hilab/dots.ocr/blob/master/assets/blog.md" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;"> | |
📝 Release Blog | |
</a> | |
<a href="https://github.com/rednote-hilab/dots.ocr" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;"> | |
💻 GitHub Repository | |
</a> | |
</div> | |
</div> | |
""") | |
# Main interface | |
with gr.Row(): | |
# Left column - Input and controls | |
with gr.Column(scale=1): | |
# File input | |
file_input = gr.File( | |
label="Upload Image or PDF", | |
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], | |
type="filepath" | |
) | |
# Image preview | |
image_preview = gr.Image( | |
label="Preview", | |
type="pil", | |
interactive=False, | |
height=300 | |
) | |
# Page navigation for PDFs | |
with gr.Row(): | |
prev_page_btn = gr.Button("◀ Previous", size="md") | |
page_info = gr.HTML('<div class="page-info">No file loaded</div>') | |
next_page_btn = gr.Button("Next ▶", size="md") | |
# Advanced settings | |
with gr.Accordion("Advanced Settings", open=False): | |
max_new_tokens = gr.Slider( | |
minimum=1000, | |
maximum=32000, | |
value=24000, | |
step=1000, | |
label="Max New Tokens", | |
info="Maximum number of tokens to generate" | |
) | |
min_pixels = gr.Number( | |
value=MIN_PIXELS, | |
label="Min Pixels", | |
info="Minimum image resolution" | |
) | |
max_pixels = gr.Number( | |
value=MAX_PIXELS, | |
label="Max Pixels", | |
info="Maximum image resolution" | |
) | |
# Process button | |
process_btn = gr.Button( | |
"🚀 Process Document", | |
variant="primary", | |
elem_classes=["process-button"], | |
size="lg" | |
) | |
# Clear button | |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary") | |
# Right column - Results | |
with gr.Column(scale=2): | |
# Results tabs | |
with gr.Tabs(): | |
# Processed image tab | |
with gr.Tab("🖼️ Processed Image"): | |
processed_image = gr.Image( | |
label="Image with Layout Detection", | |
type="pil", | |
interactive=False, | |
height=500 | |
) | |
# Markdown output tab | |
with gr.Tab("📝 Extracted Content"): | |
markdown_output = gr.Markdown( | |
value="Click 'Process Document' to see extracted content...", | |
height=500 | |
) | |
# JSON layout tab | |
with gr.Tab("📋 Layout JSON"): | |
json_output = gr.JSON( | |
label="Layout Analysis Results", | |
value=None | |
) | |
# Event handlers | |
def process_document(file_path, max_tokens, min_pix, max_pix): | |
"""Process the uploaded document""" | |
global pdf_cache | |
try: | |
if not file_path: | |
return None, "Please upload a file first.", None | |
if model is None: | |
return None, "Model not loaded. Please refresh the page and try again.", None | |
# Load and preview file | |
image, page_info = load_file_for_preview(file_path) | |
if image is None: | |
return None, page_info, None | |
# Process the image(s) | |
if pdf_cache["file_type"] == "pdf": | |
# Process all pages for PDF | |
all_results = [] | |
all_markdown = [] | |
for i, img in enumerate(pdf_cache["images"]): | |
result = process_image( | |
img, | |
min_pixels=int(min_pix) if min_pix else None, | |
max_pixels=int(max_pix) if max_pix else None | |
) | |
all_results.append(result) | |
if result.get('markdown_content'): | |
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}") | |
pdf_cache["results"] = all_results | |
pdf_cache["is_parsed"] = True | |
# Show results for first page | |
first_result = all_results[0] | |
combined_markdown = "\n\n---\n\n".join(all_markdown) | |
# Check if the combined markdown contains mostly Arabic text | |
if is_arabic_text(combined_markdown): | |
markdown_update = gr.update(value=combined_markdown, rtl=True) | |
else: | |
markdown_update = combined_markdown | |
return ( | |
first_result['processed_image'], | |
markdown_update, | |
first_result['layout_result'] | |
) | |
else: | |
# Process single image | |
result = process_image( | |
image, | |
min_pixels=int(min_pix) if min_pix else None, | |
max_pixels=int(max_pix) if max_pix else None | |
) | |
pdf_cache["results"] = [result] | |
pdf_cache["is_parsed"] = True | |
# Check if the content contains mostly Arabic text | |
content = result['markdown_content'] or "No content extracted" | |
if is_arabic_text(content): | |
markdown_update = gr.update(value=content, rtl=True) | |
else: | |
markdown_update = content | |
return ( | |
result['processed_image'], | |
markdown_update, | |
result['layout_result'] | |
) | |
except Exception as e: | |
error_msg = f"Error processing document: {str(e)}" | |
print(error_msg) | |
traceback.print_exc() | |
return None, error_msg, None | |
def handle_file_upload(file_path): | |
"""Handle file upload and show preview""" | |
if not file_path: | |
return None, "No file loaded" | |
image, page_info = load_file_for_preview(file_path) | |
return image, page_info | |
def handle_page_turn(direction): | |
"""Handle page navigation""" | |
image, page_info, result = turn_page(direction) | |
return image, page_info, result | |
def clear_all(): | |
"""Clear all data and reset interface""" | |
global pdf_cache | |
pdf_cache = { | |
"images": [], "current_page": 0, "total_pages": 0, | |
"file_type": None, "is_parsed": False, "results": [] | |
} | |
return ( | |
None, # file_input | |
None, # image_preview | |
'<div class="page-info">No file loaded</div>', # page_info | |
None, # processed_image | |
"Click 'Process Document' to see extracted content...", # markdown_output | |
None, # json_output | |
) | |
# Wire up event handlers | |
file_input.change( | |
handle_file_upload, | |
inputs=[file_input], | |
outputs=[image_preview, page_info] | |
) | |
# The outputs list is now updated to include all components that need to change | |
prev_page_btn.click( | |
lambda: turn_page("prev"), | |
outputs=[image_preview, page_info, markdown_output, processed_image, json_output] | |
) | |
next_page_btn.click( | |
lambda: turn_page("next"), | |
outputs=[image_preview, page_info, markdown_output, processed_image, json_output] | |
) | |
process_btn.click( | |
process_document, | |
inputs=[file_input, max_new_tokens, min_pixels, max_pixels], | |
outputs=[processed_image, markdown_output, json_output] | |
) | |
# The outputs list for the clear button is now correct | |
clear_btn.click( | |
clear_all, | |
outputs=[ | |
file_input, image_preview, page_info, processed_image, | |
markdown_output, json_output | |
] | |
) | |
return demo | |
if __name__ == "__main__": | |
# Create and launch the interface | |
demo = create_gradio_interface() | |
demo.queue(max_size=10).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
debug=True, | |
show_error=True | |
) | |