MinhDS commited on
Commit
51914db
·
verified ·
1 Parent(s): 4989538

Upload 11 files

Browse files
Files changed (12) hide show
  1. .gitattributes +7 -0
  2. Data.png +3 -0
  3. Model.png +3 -0
  4. Poster.png +3 -0
  5. README.md +70 -14
  6. Tasks.png +3 -0
  7. app.py +290 -0
  8. image-demo.png +3 -0
  9. image1.jpg +3 -0
  10. image2.jpg +3 -0
  11. requirements.txt +10 -0
  12. toeic-part2.jpg +0 -0
.gitattributes CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Data.png filter=lfs diff=lfs merge=lfs -text
37
+ image-demo.png filter=lfs diff=lfs merge=lfs -text
38
+ image1.jpg filter=lfs diff=lfs merge=lfs -text
39
+ image2.jpg filter=lfs diff=lfs merge=lfs -text
40
+ Model.png filter=lfs diff=lfs merge=lfs -text
41
+ Poster.png filter=lfs diff=lfs merge=lfs -text
42
+ Tasks.png filter=lfs diff=lfs merge=lfs -text
Data.png ADDED

Git LFS Details

  • SHA256: 09c4046a5dcfc589dbbaac3b7681c2705fb553793f6aa5a51ee0cac6e1bc90f6
  • Pointer size: 131 Bytes
  • Size of remote file: 434 kB
Model.png ADDED

Git LFS Details

  • SHA256: 9e910efbdfd337ed4ff7cb792f6bdb4aadacd867c24b7bf99fb4d2ff23753841
  • Pointer size: 132 Bytes
  • Size of remote file: 1.01 MB
Poster.png ADDED

Git LFS Details

  • SHA256: 2a711aaa73c9413fba715c7f6b54d4b5bcea8d9016bbd5deaa830cde5c4e9a00
  • Pointer size: 132 Bytes
  • Size of remote file: 5.08 MB
README.md CHANGED
@@ -1,14 +1,70 @@
1
- ---
2
- title: Florence 2 Demo
3
- emoji: 🏆
4
- colorFrom: indigo
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.39.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: 'This is demo of Florence-2: Advancing a Unified Representati'
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Florence-2 Demo: Advancing a Unified Representation for a Variety of Vision Tasks
2
+
3
+ This is a Gradio-based demo showcasing **Florence-2**, a unified vision foundation model that advances the state-of-the-art in various computer vision tasks through a single, versatile architecture.
4
+
5
+ ## Demo Preview
6
+
7
+ ![Demo Screenshot](./image-demo.png)
8
+
9
+ ## About Florence-2
10
+
11
+ Florence-2 represents a significant breakthrough in computer vision by providing a unified representation that can handle a diverse range of vision tasks including:
12
+
13
+ - Object detection
14
+ - Image captioning
15
+ - Visual question answering
16
+ - OCR (Optical Character Recognition)
17
+ - Region proposal
18
+ - Segmentation
19
+ - And many more vision tasks
20
+
21
+ The model demonstrates how a single architecture can be effectively applied across multiple vision domains, eliminating the need for task-specific models.
22
+
23
+ ## Paper & Resources
24
+
25
+ 📄 **CVPR 2024 Paper**: [Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks](https://openaccess.thecvf.com/content/CVPR2024/papers/Xiao_Florence-2_Advancing_a_Unified_Representation_for_a_Variety_of_Vision_CVPR_2024_paper.pdf)
26
+
27
+ 🎥 **CVPR Virtual Presentation**: [https://cvpr.thecvf.com/virtual/2024/poster/30529](https://cvpr.thecvf.com/virtual/2024/poster/30529)
28
+
29
+ 🖼️ **Research Poster**: [Poster.png](./Poster.png)
30
+
31
+ ## Demo Features
32
+
33
+ This Gradio demo allows you to:
34
+ - Upload images and interact with Florence-2's various capabilities
35
+ - Test different vision tasks on your own images
36
+ - Experience the unified model's performance across multiple domains
37
+
38
+ ## Getting Started
39
+
40
+ 1. Install the required dependencies:
41
+ ```bash
42
+ pip install -r requirements.txt
43
+ ```
44
+
45
+ 2. Run the demo:
46
+ ```bash
47
+ python app.py
48
+ ```
49
+
50
+ 3. Open your browser and navigate to the provided local URL to start using the demo.
51
+
52
+ ## References
53
+
54
+ **Hugging Face Spaces**:
55
+ - [Florence-2 Demo by gokaygokay](https://huggingface.co/spaces/gokaygokay/Florence-2)
56
+ - [Florence-SAM Integration by SkalskiP](https://huggingface.co/spaces/SkalskiP/florence-sam)
57
+
58
+ ## Citation
59
+
60
+ If you use this demo or find Florence-2 useful in your research, please cite:
61
+
62
+ ```bibtex
63
+ @inproceedings{xiao2024florence,
64
+ title={Florence-2: Advancing a unified representation for a variety of vision tasks},
65
+ author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
66
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
67
+ pages={4818--4829},
68
+ year={2024}
69
+ }
70
+ ```
Tasks.png ADDED

Git LFS Details

  • SHA256: f5b2e62d5b01e471285ab028dec6032f8fd27c922272a65a335ab1279ead039a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.11 MB
app.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ import spaces
4
+ import torch
5
+ import requests
6
+ import copy
7
+ from PIL import Image, ImageDraw, ImageFont
8
+ import io
9
+ import matplotlib.pyplot as plt
10
+ import matplotlib.patches as patches
11
+ import random
12
+ import numpy as np
13
+
14
+ # import subprocess
15
+ # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
16
+
17
+ device = "cuda" if torch.cuda.is_available() else "cpu"
18
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
19
+
20
+ models = {
21
+ # 'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to(device).eval(),
22
+ # 'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval(),
23
+ 'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to(device).eval(),
24
+ 'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", torch_dtype=torch_dtype, trust_remote_code=True).to(device) # AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval(),
25
+ }
26
+
27
+ processors = {
28
+ # 'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
29
+ # 'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True),
30
+ 'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True),
31
+ 'microsoft/Florence-2-base': AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) # AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
32
+ }
33
+
34
+
35
+ # Updated DESCRIPTION with the title
36
+ DESCRIPTION = """
37
+ # [Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks](https://arxiv.org/pdf/2311.06242)
38
+ """ # [Florence-2 Demo](https://huggingface.co/microsoft/Florence-2-large)
39
+
40
+ colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
41
+ 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
42
+
43
+ def fig_to_pil(fig):
44
+ buf = io.BytesIO()
45
+ fig.savefig(buf, format='png')
46
+ buf.seek(0)
47
+ return Image.open(buf)
48
+
49
+ @spaces.GPU
50
+ def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-base'):
51
+ model = models[model_id]
52
+ processor = processors[model_id]
53
+ if text_input is None:
54
+ prompt = task_prompt
55
+ else:
56
+ prompt = task_prompt + text_input
57
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
58
+ generated_ids = model.generate(
59
+ input_ids=inputs["input_ids"],
60
+ pixel_values=inputs["pixel_values"],
61
+ max_new_tokens=1024,
62
+ early_stopping=False,
63
+ do_sample=False,
64
+ num_beams=3,
65
+ )
66
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
67
+ parsed_answer = processor.post_process_generation(
68
+ generated_text,
69
+ task=task_prompt,
70
+ image_size=(image.width, image.height)
71
+ )
72
+ return parsed_answer
73
+
74
+ def plot_bbox(image, data):
75
+ fig, ax = plt.subplots()
76
+ ax.imshow(image)
77
+ for bbox, label in zip(data['bboxes'], data['labels']):
78
+ x1, y1, x2, y2 = bbox
79
+ rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
80
+ ax.add_patch(rect)
81
+ plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
82
+ ax.axis('off')
83
+ return fig
84
+
85
+ def draw_polygons(image, prediction, fill_mask=False):
86
+ draw = ImageDraw.Draw(image)
87
+ scale = 1
88
+ for polygons, label in zip(prediction['polygons'], prediction['labels']):
89
+ color = random.choice(colormap)
90
+ fill_color = random.choice(colormap) if fill_mask else None
91
+ for _polygon in polygons:
92
+ _polygon = np.array(_polygon).reshape(-1, 2)
93
+ if len(_polygon) < 3:
94
+ print('Invalid polygon:', _polygon)
95
+ continue
96
+ _polygon = (_polygon * scale).reshape(-1).tolist()
97
+ if fill_mask:
98
+ draw.polygon(_polygon, outline=color, fill=fill_color)
99
+ else:
100
+ draw.polygon(_polygon, outline=color)
101
+ draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
102
+ return image
103
+
104
+ def convert_to_od_format(data):
105
+ bboxes = data.get('bboxes', [])
106
+ labels = data.get('bboxes_labels', [])
107
+ od_results = {
108
+ 'bboxes': bboxes,
109
+ 'labels': labels
110
+ }
111
+ return od_results
112
+
113
+ def draw_ocr_bboxes(image, prediction):
114
+ scale = 1
115
+ draw = ImageDraw.Draw(image)
116
+ bboxes, labels = prediction['quad_boxes'], prediction['labels']
117
+ for box, label in zip(bboxes, labels):
118
+ color = random.choice(colormap)
119
+ new_box = (np.array(box) * scale).tolist()
120
+ draw.polygon(new_box, width=3, outline=color)
121
+ draw.text((new_box[0]+8, new_box[1]+2),
122
+ "{}".format(label),
123
+ align="right",
124
+ fill=color)
125
+ return image
126
+
127
+ def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-base'):
128
+ image = Image.fromarray(image) # Convert NumPy array to PIL Image
129
+ if task_prompt == 'Caption':
130
+ task_prompt = '<CAPTION>'
131
+ results = run_example(task_prompt, image, model_id=model_id)
132
+ return results, None
133
+ elif task_prompt == 'Detailed Caption':
134
+ task_prompt = '<DETAILED_CAPTION>'
135
+ results = run_example(task_prompt, image, model_id=model_id)
136
+ return results, None
137
+ elif task_prompt == 'More Detailed Caption':
138
+ task_prompt = '<MORE_DETAILED_CAPTION>'
139
+ results = run_example(task_prompt, image, model_id=model_id)
140
+ return results, None
141
+ elif task_prompt == 'Caption + Grounding':
142
+ task_prompt = '<CAPTION>'
143
+ results = run_example(task_prompt, image, model_id=model_id)
144
+ text_input = results[task_prompt]
145
+ task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
146
+ results = run_example(task_prompt, image, text_input, model_id)
147
+ results['<CAPTION>'] = text_input
148
+ fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
149
+ return results, fig_to_pil(fig)
150
+ elif task_prompt == 'Detailed Caption + Grounding':
151
+ task_prompt = '<DETAILED_CAPTION>'
152
+ results = run_example(task_prompt, image, model_id=model_id)
153
+ text_input = results[task_prompt]
154
+ task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
155
+ results = run_example(task_prompt, image, text_input, model_id)
156
+ results['<DETAILED_CAPTION>'] = text_input
157
+ fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
158
+ return results, fig_to_pil(fig)
159
+ elif task_prompt == 'More Detailed Caption + Grounding':
160
+ task_prompt = '<MORE_DETAILED_CAPTION>'
161
+ results = run_example(task_prompt, image, model_id=model_id)
162
+ text_input = results[task_prompt]
163
+ task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
164
+ results = run_example(task_prompt, image, text_input, model_id)
165
+ results['<MORE_DETAILED_CAPTION>'] = text_input
166
+ fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
167
+ return results, fig_to_pil(fig)
168
+ elif task_prompt == 'Object Detection':
169
+ task_prompt = '<OD>'
170
+ results = run_example(task_prompt, image, model_id=model_id)
171
+ fig = plot_bbox(image, results['<OD>'])
172
+ return results, fig_to_pil(fig)
173
+ elif task_prompt == 'Dense Region Caption':
174
+ task_prompt = '<DENSE_REGION_CAPTION>'
175
+ results = run_example(task_prompt, image, model_id=model_id)
176
+ fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
177
+ return results, fig_to_pil(fig)
178
+ elif task_prompt == 'Region Proposal':
179
+ task_prompt = '<REGION_PROPOSAL>'
180
+ results = run_example(task_prompt, image, model_id=model_id)
181
+ fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
182
+ return results, fig_to_pil(fig)
183
+ elif task_prompt == 'Caption to Phrase Grounding':
184
+ task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
185
+ results = run_example(task_prompt, image, text_input, model_id)
186
+ fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
187
+ return results, fig_to_pil(fig)
188
+ elif task_prompt == 'Referring Expression Segmentation':
189
+ task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
190
+ results = run_example(task_prompt, image, text_input, model_id)
191
+ output_image = copy.deepcopy(image)
192
+ output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
193
+ return results, output_image
194
+ elif task_prompt == 'Region to Segmentation':
195
+ task_prompt = '<REGION_TO_SEGMENTATION>'
196
+ results = run_example(task_prompt, image, text_input, model_id)
197
+ output_image = copy.deepcopy(image)
198
+ output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
199
+ return results, output_image
200
+ elif task_prompt == 'Open Vocabulary Detection':
201
+ task_prompt = '<OPEN_VOCABULARY_DETECTION>'
202
+ results = run_example(task_prompt, image, text_input, model_id)
203
+ bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
204
+ fig = plot_bbox(image, bbox_results)
205
+ return results, fig_to_pil(fig)
206
+ elif task_prompt == 'Region to Category':
207
+ task_prompt = '<REGION_TO_CATEGORY>'
208
+ results = run_example(task_prompt, image, text_input, model_id)
209
+ return results, None
210
+ elif task_prompt == 'Region to Description':
211
+ task_prompt = '<REGION_TO_DESCRIPTION>'
212
+ results = run_example(task_prompt, image, text_input, model_id)
213
+ return results, None
214
+ elif task_prompt == 'OCR':
215
+ task_prompt = '<OCR>'
216
+ results = run_example(task_prompt, image, model_id=model_id)
217
+ return results, None
218
+ elif task_prompt == 'OCR with Region':
219
+ task_prompt = '<OCR_WITH_REGION>'
220
+ results = run_example(task_prompt, image, model_id=model_id)
221
+ output_image = copy.deepcopy(image)
222
+ output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
223
+ return results, output_image
224
+ else:
225
+ return "", None
226
+
227
+ css = """
228
+ #output {
229
+ height: 500px;
230
+ overflow: auto;
231
+ border: 1px solid #ccc;
232
+ }
233
+ """
234
+
235
+ single_task_list = [
236
+ 'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
237
+ 'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
238
+ 'Referring Expression Segmentation', 'Region to Segmentation',
239
+ 'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
240
+ 'OCR', 'OCR with Region'
241
+ ]
242
+
243
+ cascased_task_list = [
244
+ 'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
245
+ ]
246
+
247
+ def update_task_dropdown(choice):
248
+ if choice == 'Cascased task':
249
+ return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
250
+ else:
251
+ return gr.Dropdown(choices=single_task_list, value='Caption')
252
+
253
+ with gr.Blocks(css=css) as demo:
254
+ gr.Markdown(DESCRIPTION)
255
+ with gr.Row():
256
+ with gr.Column():
257
+ # Add overview.png image display
258
+ gr.Image("Tasks.png", label="Task Overview Image", type="pil", width=444, height=500)
259
+ with gr.Column():
260
+ gr.Image("Data.png", label="Data Engine", type="pil", elem_id="model_image", height=168)
261
+ gr.Image("Model.png", label="Model", type="pil", elem_id="model_image", height=316)
262
+ with gr.Tab(label="Florence-2 Demo"):
263
+ with gr.Row():
264
+ with gr.Column():
265
+ model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-base')
266
+ task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
267
+ task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
268
+ task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
269
+ text_input = gr.Textbox(label="Text Input (optional)")
270
+ input_img = gr.Image(label="Input Picture")
271
+ submit_btn = gr.Button(value="Submit")
272
+ with gr.Column():
273
+ output_text = gr.Textbox(label="Output Text")
274
+ output_img = gr.Image(label="Output Image")
275
+
276
+ gr.Examples(
277
+ examples=[
278
+ ["image1.jpg", 'Object Detection'],
279
+ ["image2.jpg", 'OCR with Region']
280
+ ],
281
+ inputs=[input_img, task_prompt],
282
+ outputs=[output_text, output_img],
283
+ fn=process_image,
284
+ cache_examples=True,
285
+ label='Try examples'
286
+ )
287
+
288
+ submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
289
+
290
+ demo.launch(debug=True)
image-demo.png ADDED

Git LFS Details

  • SHA256: 240ebb2fef9d014d365fe84f530e2836e64883222516c7ebccacfff3f670d658
  • Pointer size: 132 Bytes
  • Size of remote file: 2.76 MB
image1.jpg ADDED

Git LFS Details

  • SHA256: 7e7b0833e37b3e1e5d4d49729ce4f55618134355fe3ce2e0a926d14ce70baf2c
  • Pointer size: 131 Bytes
  • Size of remote file: 110 kB
image2.jpg ADDED

Git LFS Details

  • SHA256: 51ad473aa93911001cbef61ff20edbe37fbf959624247a99b2aed606a4dab115
  • Pointer size: 131 Bytes
  • Size of remote file: 345 kB
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ spaces
2
+ timm
3
+ flask==2.3.3
4
+ werkzeug==2.3.7
5
+ flask-cors==4.0.0
6
+ torch>=2.0.0
7
+ transformers>=4.30.0
8
+ Pillow>=9.0.0
9
+ matplotlib>=3.5.0
10
+ numpy>=1.21.0
toeic-part2.jpg ADDED