Spaces:
Running
Running
Upload 11 files
Browse files- .gitattributes +7 -0
- Data.png +3 -0
- Model.png +3 -0
- Poster.png +3 -0
- README.md +70 -14
- Tasks.png +3 -0
- app.py +290 -0
- image-demo.png +3 -0
- image1.jpg +3 -0
- image2.jpg +3 -0
- requirements.txt +10 -0
- toeic-part2.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Data.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
image-demo.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
image1.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
image2.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
Model.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Poster.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
Tasks.png filter=lfs diff=lfs merge=lfs -text
|
Data.png
ADDED
![]() |
Git LFS Details
|
Model.png
ADDED
![]() |
Git LFS Details
|
Poster.png
ADDED
![]() |
Git LFS Details
|
README.md
CHANGED
@@ -1,14 +1,70 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Florence-2 Demo: Advancing a Unified Representation for a Variety of Vision Tasks
|
2 |
+
|
3 |
+
This is a Gradio-based demo showcasing **Florence-2**, a unified vision foundation model that advances the state-of-the-art in various computer vision tasks through a single, versatile architecture.
|
4 |
+
|
5 |
+
## Demo Preview
|
6 |
+
|
7 |
+

|
8 |
+
|
9 |
+
## About Florence-2
|
10 |
+
|
11 |
+
Florence-2 represents a significant breakthrough in computer vision by providing a unified representation that can handle a diverse range of vision tasks including:
|
12 |
+
|
13 |
+
- Object detection
|
14 |
+
- Image captioning
|
15 |
+
- Visual question answering
|
16 |
+
- OCR (Optical Character Recognition)
|
17 |
+
- Region proposal
|
18 |
+
- Segmentation
|
19 |
+
- And many more vision tasks
|
20 |
+
|
21 |
+
The model demonstrates how a single architecture can be effectively applied across multiple vision domains, eliminating the need for task-specific models.
|
22 |
+
|
23 |
+
## Paper & Resources
|
24 |
+
|
25 |
+
📄 **CVPR 2024 Paper**: [Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks](https://openaccess.thecvf.com/content/CVPR2024/papers/Xiao_Florence-2_Advancing_a_Unified_Representation_for_a_Variety_of_Vision_CVPR_2024_paper.pdf)
|
26 |
+
|
27 |
+
🎥 **CVPR Virtual Presentation**: [https://cvpr.thecvf.com/virtual/2024/poster/30529](https://cvpr.thecvf.com/virtual/2024/poster/30529)
|
28 |
+
|
29 |
+
🖼️ **Research Poster**: [Poster.png](./Poster.png)
|
30 |
+
|
31 |
+
## Demo Features
|
32 |
+
|
33 |
+
This Gradio demo allows you to:
|
34 |
+
- Upload images and interact with Florence-2's various capabilities
|
35 |
+
- Test different vision tasks on your own images
|
36 |
+
- Experience the unified model's performance across multiple domains
|
37 |
+
|
38 |
+
## Getting Started
|
39 |
+
|
40 |
+
1. Install the required dependencies:
|
41 |
+
```bash
|
42 |
+
pip install -r requirements.txt
|
43 |
+
```
|
44 |
+
|
45 |
+
2. Run the demo:
|
46 |
+
```bash
|
47 |
+
python app.py
|
48 |
+
```
|
49 |
+
|
50 |
+
3. Open your browser and navigate to the provided local URL to start using the demo.
|
51 |
+
|
52 |
+
## References
|
53 |
+
|
54 |
+
**Hugging Face Spaces**:
|
55 |
+
- [Florence-2 Demo by gokaygokay](https://huggingface.co/spaces/gokaygokay/Florence-2)
|
56 |
+
- [Florence-SAM Integration by SkalskiP](https://huggingface.co/spaces/SkalskiP/florence-sam)
|
57 |
+
|
58 |
+
## Citation
|
59 |
+
|
60 |
+
If you use this demo or find Florence-2 useful in your research, please cite:
|
61 |
+
|
62 |
+
```bibtex
|
63 |
+
@inproceedings{xiao2024florence,
|
64 |
+
title={Florence-2: Advancing a unified representation for a variety of vision tasks},
|
65 |
+
author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
|
66 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
67 |
+
pages={4818--4829},
|
68 |
+
year={2024}
|
69 |
+
}
|
70 |
+
```
|
Tasks.png
ADDED
![]() |
Git LFS Details
|
app.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
import copy
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
import io
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import matplotlib.patches as patches
|
11 |
+
import random
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
# import subprocess
|
15 |
+
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
16 |
+
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
19 |
+
|
20 |
+
models = {
|
21 |
+
# 'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to(device).eval(),
|
22 |
+
# 'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval(),
|
23 |
+
'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to(device).eval(),
|
24 |
+
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", torch_dtype=torch_dtype, trust_remote_code=True).to(device) # AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval(),
|
25 |
+
}
|
26 |
+
|
27 |
+
processors = {
|
28 |
+
# 'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
|
29 |
+
# 'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True),
|
30 |
+
'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True),
|
31 |
+
'microsoft/Florence-2-base': AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) # AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
# Updated DESCRIPTION with the title
|
36 |
+
DESCRIPTION = """
|
37 |
+
# [Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks](https://arxiv.org/pdf/2311.06242)
|
38 |
+
""" # [Florence-2 Demo](https://huggingface.co/microsoft/Florence-2-large)
|
39 |
+
|
40 |
+
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
41 |
+
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
42 |
+
|
43 |
+
def fig_to_pil(fig):
|
44 |
+
buf = io.BytesIO()
|
45 |
+
fig.savefig(buf, format='png')
|
46 |
+
buf.seek(0)
|
47 |
+
return Image.open(buf)
|
48 |
+
|
49 |
+
@spaces.GPU
|
50 |
+
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-base'):
|
51 |
+
model = models[model_id]
|
52 |
+
processor = processors[model_id]
|
53 |
+
if text_input is None:
|
54 |
+
prompt = task_prompt
|
55 |
+
else:
|
56 |
+
prompt = task_prompt + text_input
|
57 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
58 |
+
generated_ids = model.generate(
|
59 |
+
input_ids=inputs["input_ids"],
|
60 |
+
pixel_values=inputs["pixel_values"],
|
61 |
+
max_new_tokens=1024,
|
62 |
+
early_stopping=False,
|
63 |
+
do_sample=False,
|
64 |
+
num_beams=3,
|
65 |
+
)
|
66 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
67 |
+
parsed_answer = processor.post_process_generation(
|
68 |
+
generated_text,
|
69 |
+
task=task_prompt,
|
70 |
+
image_size=(image.width, image.height)
|
71 |
+
)
|
72 |
+
return parsed_answer
|
73 |
+
|
74 |
+
def plot_bbox(image, data):
|
75 |
+
fig, ax = plt.subplots()
|
76 |
+
ax.imshow(image)
|
77 |
+
for bbox, label in zip(data['bboxes'], data['labels']):
|
78 |
+
x1, y1, x2, y2 = bbox
|
79 |
+
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
80 |
+
ax.add_patch(rect)
|
81 |
+
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
82 |
+
ax.axis('off')
|
83 |
+
return fig
|
84 |
+
|
85 |
+
def draw_polygons(image, prediction, fill_mask=False):
|
86 |
+
draw = ImageDraw.Draw(image)
|
87 |
+
scale = 1
|
88 |
+
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
89 |
+
color = random.choice(colormap)
|
90 |
+
fill_color = random.choice(colormap) if fill_mask else None
|
91 |
+
for _polygon in polygons:
|
92 |
+
_polygon = np.array(_polygon).reshape(-1, 2)
|
93 |
+
if len(_polygon) < 3:
|
94 |
+
print('Invalid polygon:', _polygon)
|
95 |
+
continue
|
96 |
+
_polygon = (_polygon * scale).reshape(-1).tolist()
|
97 |
+
if fill_mask:
|
98 |
+
draw.polygon(_polygon, outline=color, fill=fill_color)
|
99 |
+
else:
|
100 |
+
draw.polygon(_polygon, outline=color)
|
101 |
+
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
102 |
+
return image
|
103 |
+
|
104 |
+
def convert_to_od_format(data):
|
105 |
+
bboxes = data.get('bboxes', [])
|
106 |
+
labels = data.get('bboxes_labels', [])
|
107 |
+
od_results = {
|
108 |
+
'bboxes': bboxes,
|
109 |
+
'labels': labels
|
110 |
+
}
|
111 |
+
return od_results
|
112 |
+
|
113 |
+
def draw_ocr_bboxes(image, prediction):
|
114 |
+
scale = 1
|
115 |
+
draw = ImageDraw.Draw(image)
|
116 |
+
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
117 |
+
for box, label in zip(bboxes, labels):
|
118 |
+
color = random.choice(colormap)
|
119 |
+
new_box = (np.array(box) * scale).tolist()
|
120 |
+
draw.polygon(new_box, width=3, outline=color)
|
121 |
+
draw.text((new_box[0]+8, new_box[1]+2),
|
122 |
+
"{}".format(label),
|
123 |
+
align="right",
|
124 |
+
fill=color)
|
125 |
+
return image
|
126 |
+
|
127 |
+
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-base'):
|
128 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
129 |
+
if task_prompt == 'Caption':
|
130 |
+
task_prompt = '<CAPTION>'
|
131 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
132 |
+
return results, None
|
133 |
+
elif task_prompt == 'Detailed Caption':
|
134 |
+
task_prompt = '<DETAILED_CAPTION>'
|
135 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
136 |
+
return results, None
|
137 |
+
elif task_prompt == 'More Detailed Caption':
|
138 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
139 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
140 |
+
return results, None
|
141 |
+
elif task_prompt == 'Caption + Grounding':
|
142 |
+
task_prompt = '<CAPTION>'
|
143 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
144 |
+
text_input = results[task_prompt]
|
145 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
146 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
147 |
+
results['<CAPTION>'] = text_input
|
148 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
149 |
+
return results, fig_to_pil(fig)
|
150 |
+
elif task_prompt == 'Detailed Caption + Grounding':
|
151 |
+
task_prompt = '<DETAILED_CAPTION>'
|
152 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
153 |
+
text_input = results[task_prompt]
|
154 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
155 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
156 |
+
results['<DETAILED_CAPTION>'] = text_input
|
157 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
158 |
+
return results, fig_to_pil(fig)
|
159 |
+
elif task_prompt == 'More Detailed Caption + Grounding':
|
160 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
161 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
162 |
+
text_input = results[task_prompt]
|
163 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
164 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
165 |
+
results['<MORE_DETAILED_CAPTION>'] = text_input
|
166 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
167 |
+
return results, fig_to_pil(fig)
|
168 |
+
elif task_prompt == 'Object Detection':
|
169 |
+
task_prompt = '<OD>'
|
170 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
171 |
+
fig = plot_bbox(image, results['<OD>'])
|
172 |
+
return results, fig_to_pil(fig)
|
173 |
+
elif task_prompt == 'Dense Region Caption':
|
174 |
+
task_prompt = '<DENSE_REGION_CAPTION>'
|
175 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
176 |
+
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
177 |
+
return results, fig_to_pil(fig)
|
178 |
+
elif task_prompt == 'Region Proposal':
|
179 |
+
task_prompt = '<REGION_PROPOSAL>'
|
180 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
181 |
+
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
182 |
+
return results, fig_to_pil(fig)
|
183 |
+
elif task_prompt == 'Caption to Phrase Grounding':
|
184 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
185 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
186 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
187 |
+
return results, fig_to_pil(fig)
|
188 |
+
elif task_prompt == 'Referring Expression Segmentation':
|
189 |
+
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
190 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
191 |
+
output_image = copy.deepcopy(image)
|
192 |
+
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
193 |
+
return results, output_image
|
194 |
+
elif task_prompt == 'Region to Segmentation':
|
195 |
+
task_prompt = '<REGION_TO_SEGMENTATION>'
|
196 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
197 |
+
output_image = copy.deepcopy(image)
|
198 |
+
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
199 |
+
return results, output_image
|
200 |
+
elif task_prompt == 'Open Vocabulary Detection':
|
201 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
202 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
203 |
+
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
204 |
+
fig = plot_bbox(image, bbox_results)
|
205 |
+
return results, fig_to_pil(fig)
|
206 |
+
elif task_prompt == 'Region to Category':
|
207 |
+
task_prompt = '<REGION_TO_CATEGORY>'
|
208 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
209 |
+
return results, None
|
210 |
+
elif task_prompt == 'Region to Description':
|
211 |
+
task_prompt = '<REGION_TO_DESCRIPTION>'
|
212 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
213 |
+
return results, None
|
214 |
+
elif task_prompt == 'OCR':
|
215 |
+
task_prompt = '<OCR>'
|
216 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
217 |
+
return results, None
|
218 |
+
elif task_prompt == 'OCR with Region':
|
219 |
+
task_prompt = '<OCR_WITH_REGION>'
|
220 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
221 |
+
output_image = copy.deepcopy(image)
|
222 |
+
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
223 |
+
return results, output_image
|
224 |
+
else:
|
225 |
+
return "", None
|
226 |
+
|
227 |
+
css = """
|
228 |
+
#output {
|
229 |
+
height: 500px;
|
230 |
+
overflow: auto;
|
231 |
+
border: 1px solid #ccc;
|
232 |
+
}
|
233 |
+
"""
|
234 |
+
|
235 |
+
single_task_list = [
|
236 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
237 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
238 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
239 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
240 |
+
'OCR', 'OCR with Region'
|
241 |
+
]
|
242 |
+
|
243 |
+
cascased_task_list = [
|
244 |
+
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
|
245 |
+
]
|
246 |
+
|
247 |
+
def update_task_dropdown(choice):
|
248 |
+
if choice == 'Cascased task':
|
249 |
+
return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
|
250 |
+
else:
|
251 |
+
return gr.Dropdown(choices=single_task_list, value='Caption')
|
252 |
+
|
253 |
+
with gr.Blocks(css=css) as demo:
|
254 |
+
gr.Markdown(DESCRIPTION)
|
255 |
+
with gr.Row():
|
256 |
+
with gr.Column():
|
257 |
+
# Add overview.png image display
|
258 |
+
gr.Image("Tasks.png", label="Task Overview Image", type="pil", width=444, height=500)
|
259 |
+
with gr.Column():
|
260 |
+
gr.Image("Data.png", label="Data Engine", type="pil", elem_id="model_image", height=168)
|
261 |
+
gr.Image("Model.png", label="Model", type="pil", elem_id="model_image", height=316)
|
262 |
+
with gr.Tab(label="Florence-2 Demo"):
|
263 |
+
with gr.Row():
|
264 |
+
with gr.Column():
|
265 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-base')
|
266 |
+
task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
|
267 |
+
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
|
268 |
+
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
|
269 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
270 |
+
input_img = gr.Image(label="Input Picture")
|
271 |
+
submit_btn = gr.Button(value="Submit")
|
272 |
+
with gr.Column():
|
273 |
+
output_text = gr.Textbox(label="Output Text")
|
274 |
+
output_img = gr.Image(label="Output Image")
|
275 |
+
|
276 |
+
gr.Examples(
|
277 |
+
examples=[
|
278 |
+
["image1.jpg", 'Object Detection'],
|
279 |
+
["image2.jpg", 'OCR with Region']
|
280 |
+
],
|
281 |
+
inputs=[input_img, task_prompt],
|
282 |
+
outputs=[output_text, output_img],
|
283 |
+
fn=process_image,
|
284 |
+
cache_examples=True,
|
285 |
+
label='Try examples'
|
286 |
+
)
|
287 |
+
|
288 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
|
289 |
+
|
290 |
+
demo.launch(debug=True)
|
image-demo.png
ADDED
![]() |
Git LFS Details
|
image1.jpg
ADDED
![]() |
Git LFS Details
|
image2.jpg
ADDED
![]() |
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
timm
|
3 |
+
flask==2.3.3
|
4 |
+
werkzeug==2.3.7
|
5 |
+
flask-cors==4.0.0
|
6 |
+
torch>=2.0.0
|
7 |
+
transformers>=4.30.0
|
8 |
+
Pillow>=9.0.0
|
9 |
+
matplotlib>=3.5.0
|
10 |
+
numpy>=1.21.0
|
toeic-part2.jpg
ADDED
![]() |