Commit
·
1d3c9ee
1
Parent(s):
e3ae012
data pipelines
Browse files- app.py +51 -29
- data_api_calls.py +0 -191
- pages/admin.py +61 -6
- pollution_data.csv +9 -0
- python.py +0 -3
- src/data_api_calls.py +181 -0
- src/{data_loading.py → features_pipeline.py} +18 -58
- past_data_api_calls.py → src/past_data_api_calls copy.py +77 -87
- src/past_data_api_calls.py +140 -0
- src/{models_loading.py → predict.py} +19 -7
- test.ipynb +40 -11
- test.py +0 -3
- weather_data.csv +9 -0
app.py
CHANGED
@@ -3,9 +3,8 @@ import pandas as pd
|
|
3 |
import plotly.graph_objects as go
|
4 |
import streamlit as st
|
5 |
|
6 |
-
from data_api_calls import get_data
|
7 |
from src.helper_functions import custom_metric_box, pollution_box
|
8 |
-
from src.
|
9 |
|
10 |
st.set_page_config(
|
11 |
page_title="Utrecht Pollution Dashboard",
|
@@ -16,33 +15,24 @@ st.set_page_config(
|
|
16 |
|
17 |
alt.themes.enable("dark")
|
18 |
|
19 |
-
|
20 |
-
today =
|
21 |
-
previous_day =
|
22 |
-
prediction = run_model("O3", data=dataset)
|
23 |
-
pred1 = prediction[0][0]
|
24 |
-
pred2 = prediction[0][1]
|
25 |
-
pred3 = prediction[0][2]
|
26 |
|
27 |
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=8).to_list()
|
28 |
-
dates_future = pd.date_range(
|
|
|
|
|
29 |
|
30 |
# O3 and NO2 values for the past 7 days
|
31 |
-
o3_past_values =
|
32 |
-
no2_past_values =
|
33 |
-
|
34 |
-
|
35 |
-
o3_future_values = pd.Series(prediction[0].flatten()) # Flatten the array to 1D
|
36 |
-
no2_future_values = pd.Series([26, 27, 28]) # Example prediction data
|
37 |
-
|
38 |
-
# Combine the past and future values using pd.concat
|
39 |
o3_values = pd.concat([o3_past_values, o3_future_values], ignore_index=True)
|
40 |
no2_values = pd.concat([no2_past_values, no2_future_values], ignore_index=True)
|
41 |
|
42 |
-
# Combine dates and values
|
43 |
dates = dates_past + dates_future
|
44 |
-
|
45 |
-
# Create a DataFrame
|
46 |
df = pd.DataFrame({"Date": dates, "O3": o3_values, "NO2": no2_values})
|
47 |
|
48 |
|
@@ -55,13 +45,37 @@ with col1:
|
|
55 |
st.subheader("Current Weather")
|
56 |
subcol1, subcol2 = st.columns((1, 1))
|
57 |
with subcol1:
|
58 |
-
custom_metric_box(
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with subcol2:
|
62 |
-
custom_metric_box(
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
with col2:
|
67 |
st.subheader("Current Pollution Levels")
|
@@ -69,14 +83,22 @@ with col2:
|
|
69 |
# Display the prediction
|
70 |
# st.write(f'Predicted Pollution Level: {prediction[0]:.2f}')
|
71 |
with sub1:
|
72 |
-
pollution_box(
|
|
|
|
|
|
|
|
|
73 |
with st.expander("Learn more about O3", expanded=False):
|
74 |
st.markdown(
|
75 |
"*Ozone (O<sub>3</sub>)*: A harmful gas at ground level, contributing to respiratory issues and aggravating asthma.",
|
76 |
unsafe_allow_html=True,
|
77 |
)
|
78 |
with sub2:
|
79 |
-
pollution_box(
|
|
|
|
|
|
|
|
|
80 |
with st.expander("Learn more about O3", expanded=False):
|
81 |
st.markdown(
|
82 |
"*Wadeva particle (NO<sub>2</sub>)*: A harmful gas at ground level, contributing to respiratory issues and aggravating asthma.",
|
|
|
3 |
import plotly.graph_objects as go
|
4 |
import streamlit as st
|
5 |
|
|
|
6 |
from src.helper_functions import custom_metric_box, pollution_box
|
7 |
+
from src.predict import get_data_and_predictions
|
8 |
|
9 |
st.set_page_config(
|
10 |
page_title="Utrecht Pollution Dashboard",
|
|
|
15 |
|
16 |
alt.themes.enable("dark")
|
17 |
|
18 |
+
week_data, predictions_O3, predictions_NO2 = get_data_and_predictions()
|
19 |
+
today = week_data.iloc[-1]
|
20 |
+
previous_day = week_data.iloc[-2]
|
|
|
|
|
|
|
|
|
21 |
|
22 |
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=8).to_list()
|
23 |
+
dates_future = pd.date_range(
|
24 |
+
start=pd.Timestamp.today() + pd.Timedelta(days=1), periods=3
|
25 |
+
).to_list()
|
26 |
|
27 |
# O3 and NO2 values for the past 7 days
|
28 |
+
o3_past_values = week_data["O3"]
|
29 |
+
no2_past_values = week_data["NO2"]
|
30 |
+
o3_future_values = pd.Series(predictions_O3[0].flatten())
|
31 |
+
no2_future_values = pd.Series(predictions_NO2[0].flatten())
|
|
|
|
|
|
|
|
|
32 |
o3_values = pd.concat([o3_past_values, o3_future_values], ignore_index=True)
|
33 |
no2_values = pd.concat([no2_past_values, no2_future_values], ignore_index=True)
|
34 |
|
|
|
35 |
dates = dates_past + dates_future
|
|
|
|
|
36 |
df = pd.DataFrame({"Date": dates, "O3": o3_values, "NO2": no2_values})
|
37 |
|
38 |
|
|
|
45 |
st.subheader("Current Weather")
|
46 |
subcol1, subcol2 = st.columns((1, 1))
|
47 |
with subcol1:
|
48 |
+
custom_metric_box(
|
49 |
+
label="Temperature",
|
50 |
+
value=f"{round(today['mean_temp'] * 0.1)} °C",
|
51 |
+
delta=f"{round(today['mean_temp'] * 0.1) - round(previous_day['mean_temp'] * 0.1)} °C",
|
52 |
+
)
|
53 |
+
custom_metric_box(
|
54 |
+
label="Humidity",
|
55 |
+
value=f"{round(today['humidity'])} %",
|
56 |
+
delta=f"{round(today['humidity']) - round(previous_day['humidity'])} %",
|
57 |
+
)
|
58 |
+
custom_metric_box(
|
59 |
+
label="Pressure",
|
60 |
+
value=f"{round(today['pressure'] * 0.1)} hPa",
|
61 |
+
delta=f"{round(today['pressure'] * 0.1) - round(previous_day['pressure'] * 0.1)} hPa",
|
62 |
+
)
|
63 |
with subcol2:
|
64 |
+
custom_metric_box(
|
65 |
+
label="Precipitation",
|
66 |
+
value=f"{round(today['percipitation'] * 0.1)} mm",
|
67 |
+
delta=f"{round(today['percipitation'] * 0.1) - round(previous_day['percipitation'] * 0.1)} mm",
|
68 |
+
)
|
69 |
+
custom_metric_box(
|
70 |
+
label="Solar Radiation",
|
71 |
+
value=f"{round(today['global_radiation'])} J/m²",
|
72 |
+
delta=f"{round(today['global_radiation']) - round(previous_day['global_radiation'])} J/m²",
|
73 |
+
)
|
74 |
+
custom_metric_box(
|
75 |
+
label="Wind Speed",
|
76 |
+
value=f"{round(today['wind_speed'] * 0.1, 1)} m/s",
|
77 |
+
delta=f"{round(today['wind_speed'] * 0.1, 1) - round(previous_day['wind_speed'] * 0.1, 1)} m/s",
|
78 |
+
)
|
79 |
|
80 |
with col2:
|
81 |
st.subheader("Current Pollution Levels")
|
|
|
83 |
# Display the prediction
|
84 |
# st.write(f'Predicted Pollution Level: {prediction[0]:.2f}')
|
85 |
with sub1:
|
86 |
+
pollution_box(
|
87 |
+
label="O<sub>3</sub>",
|
88 |
+
value=f"{round(today['O3'])} µg/m³",
|
89 |
+
delta=f"{round(int(today['O3']) - int(previous_day['O3']))} µg/m³",
|
90 |
+
)
|
91 |
with st.expander("Learn more about O3", expanded=False):
|
92 |
st.markdown(
|
93 |
"*Ozone (O<sub>3</sub>)*: A harmful gas at ground level, contributing to respiratory issues and aggravating asthma.",
|
94 |
unsafe_allow_html=True,
|
95 |
)
|
96 |
with sub2:
|
97 |
+
pollution_box(
|
98 |
+
label="NO<sub>2</sub>",
|
99 |
+
value=f"{round(today['NO2'])} µg/m³",
|
100 |
+
delta=f"{round(int(today['NO2']) - int(previous_day['NO2']))} µg/m³",
|
101 |
+
)
|
102 |
with st.expander("Learn more about O3", expanded=False):
|
103 |
st.markdown(
|
104 |
"*Wadeva particle (NO<sub>2</sub>)*: A harmful gas at ground level, contributing to respiratory issues and aggravating asthma.",
|
data_api_calls.py
DELETED
@@ -1,191 +0,0 @@
|
|
1 |
-
import codecs
|
2 |
-
import csv
|
3 |
-
import http.client
|
4 |
-
import os
|
5 |
-
import re
|
6 |
-
import sys
|
7 |
-
import urllib.request
|
8 |
-
from datetime import date, timedelta
|
9 |
-
from io import StringIO
|
10 |
-
|
11 |
-
import pandas as pd
|
12 |
-
|
13 |
-
|
14 |
-
def pollution_data():
|
15 |
-
particles = ["NO2", "O3"]
|
16 |
-
stations = ["NL10636", "NL10639", "NL10643"]
|
17 |
-
all_dataframes = []
|
18 |
-
today = date.today().isoformat() + "T09:00:00Z"
|
19 |
-
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
20 |
-
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
|
21 |
-
days_today = 0
|
22 |
-
days_yesterday = 1
|
23 |
-
while(today != latest_date):
|
24 |
-
days_today += 1
|
25 |
-
days_yesterday += 1
|
26 |
-
for particle in particles:
|
27 |
-
for station in stations:
|
28 |
-
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
29 |
-
payload = ''
|
30 |
-
headers = {}
|
31 |
-
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
|
32 |
-
res = conn.getresponse()
|
33 |
-
data = res.read()
|
34 |
-
decoded_data = data.decode("utf-8")
|
35 |
-
df = pd.read_csv(StringIO(decoded_data))
|
36 |
-
df = df.filter(like='value')
|
37 |
-
all_dataframes.append(df)
|
38 |
-
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
39 |
-
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
|
40 |
-
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
41 |
-
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
|
42 |
-
|
43 |
-
def delete_csv(csvs):
|
44 |
-
for csv in csvs:
|
45 |
-
if(os.path.exists(csv) and os.path.isfile(csv)):
|
46 |
-
os.remove(csv)
|
47 |
-
|
48 |
-
def clean_values():
|
49 |
-
particles = ["NO2", "O3"]
|
50 |
-
csvs = []
|
51 |
-
NO2 = []
|
52 |
-
O3 = []
|
53 |
-
today = date.today().isoformat() + "T09:00:00Z"
|
54 |
-
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
55 |
-
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
|
56 |
-
days_today = 0
|
57 |
-
while(today != latest_date):
|
58 |
-
for particle in particles:
|
59 |
-
name = f'{particle}_{today}.csv'
|
60 |
-
csvs.append(name)
|
61 |
-
days_today += 1
|
62 |
-
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
63 |
-
for csv_file in csvs:
|
64 |
-
values = [] # Reset values for each CSV file
|
65 |
-
# Open the CSV file and read the values
|
66 |
-
with open(csv_file, 'r') as file:
|
67 |
-
reader = csv.reader(file)
|
68 |
-
for row in reader:
|
69 |
-
for value in row:
|
70 |
-
# Use regular expressions to extract numeric part
|
71 |
-
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
|
72 |
-
if cleaned_value: # If we successfully extract a number
|
73 |
-
values.append(float(cleaned_value[0])) # Convert the first match to float
|
74 |
-
|
75 |
-
# Compute the average if the values list is not empty
|
76 |
-
if values:
|
77 |
-
avg = sum(values) / len(values)
|
78 |
-
if "NO2" in csv_file:
|
79 |
-
NO2.append(avg)
|
80 |
-
else:
|
81 |
-
O3.append(avg)
|
82 |
-
|
83 |
-
delete_csv(csvs)
|
84 |
-
|
85 |
-
return NO2, O3
|
86 |
-
|
87 |
-
|
88 |
-
def add_columns():
|
89 |
-
file_path = 'weather_data.csv'
|
90 |
-
df = pd.read_csv(file_path)
|
91 |
-
|
92 |
-
df.insert(1, 'NO2', None)
|
93 |
-
df.insert(2, 'O3', None)
|
94 |
-
df.insert(10, 'weekday', None)
|
95 |
-
|
96 |
-
return df
|
97 |
-
|
98 |
-
|
99 |
-
def scale(data):
|
100 |
-
df = data
|
101 |
-
columns = list(df.columns)
|
102 |
-
|
103 |
-
|
104 |
-
columns.insert(3, columns.pop(6))
|
105 |
-
|
106 |
-
df = df[columns]
|
107 |
-
|
108 |
-
columns.insert(5, columns.pop(9))
|
109 |
-
|
110 |
-
df = df[columns]
|
111 |
-
|
112 |
-
columns.insert(9, columns.pop(6))
|
113 |
-
|
114 |
-
df = df[columns]
|
115 |
-
|
116 |
-
df = df.rename(columns={
|
117 |
-
'datetime':'date',
|
118 |
-
'windspeed': 'wind_speed',
|
119 |
-
'temp': 'mean_temp',
|
120 |
-
'solarradiation':'global_radiation',
|
121 |
-
'precip':'percipitation',
|
122 |
-
'sealevelpressure':'pressure',
|
123 |
-
'visibility':'minimum_visibility'
|
124 |
-
})
|
125 |
-
|
126 |
-
df['date'] = pd.to_datetime(df['date'])
|
127 |
-
df['weekday'] = df['date'].dt.day_name()
|
128 |
-
|
129 |
-
|
130 |
-
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
|
131 |
-
df['mean_temp'] = df['mean_temp'] * 10
|
132 |
-
df['minimum_visibility'] = df['minimum_visibility'] * 10
|
133 |
-
df['percipitation'] = df['percipitation'] * 10
|
134 |
-
df['pressure'] = df['pressure'] * 10
|
135 |
-
|
136 |
-
df['wind_speed'] = df['wind_speed'].astype(int)
|
137 |
-
df['mean_temp'] = df['mean_temp'].astype(int)
|
138 |
-
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
|
139 |
-
df['percipitation'] = df['percipitation'].astype(int)
|
140 |
-
df['pressure'] = df['pressure'].astype(int)
|
141 |
-
df['humidity'] = df['humidity'].astype(int)
|
142 |
-
df['global_radiation'] = df['global_radiation'].astype(int)
|
143 |
-
|
144 |
-
return df
|
145 |
-
|
146 |
-
def insert_pollution(NO2, O3, data):
|
147 |
-
df = data
|
148 |
-
start_index = 0
|
149 |
-
while NO2:
|
150 |
-
df.loc[start_index, 'NO2'] = NO2.pop()
|
151 |
-
start_index += 1
|
152 |
-
start_index = 0
|
153 |
-
while O3:
|
154 |
-
df.loc[start_index, 'O3'] = O3.pop()
|
155 |
-
start_index += 1
|
156 |
-
return df
|
157 |
-
|
158 |
-
def weather_data():
|
159 |
-
today = date.today().isoformat()
|
160 |
-
seven_days = (date.today() - timedelta(7)).isoformat()
|
161 |
-
try:
|
162 |
-
ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{seven_days}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
|
163 |
-
|
164 |
-
# Parse the results as CSV
|
165 |
-
CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
|
166 |
-
# Saving the CSV content to a file
|
167 |
-
current_dir = os.path.dirname(os.path.realpath(__file__))
|
168 |
-
file_path = os.path.join(current_dir, 'weather_data.csv')
|
169 |
-
with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
|
170 |
-
csv_writer = csv.writer(csvfile)
|
171 |
-
csv_writer.writerows(CSVText)
|
172 |
-
|
173 |
-
except urllib.error.HTTPError as e:
|
174 |
-
ErrorInfo= e.read().decode()
|
175 |
-
print('Error code: ', e.code, ErrorInfo)
|
176 |
-
sys.exit()
|
177 |
-
except urllib.error.URLError as e:
|
178 |
-
ErrorInfo= e.read().decode()
|
179 |
-
print('Error code: ', e.code,ErrorInfo)
|
180 |
-
sys.exit()
|
181 |
-
|
182 |
-
|
183 |
-
def get_data():
|
184 |
-
weather_data()
|
185 |
-
pollution_data()
|
186 |
-
NO2, O3 = clean_values()
|
187 |
-
df = add_columns()
|
188 |
-
scaled_df = scale(df)
|
189 |
-
output_df = insert_pollution(NO2, O3, scaled_df)
|
190 |
-
os.remove('weather_data.csv')
|
191 |
-
return output_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/admin.py
CHANGED
@@ -1,8 +1,63 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
USERNAME = "admin"
|
6 |
+
PASSWORD = "password"
|
7 |
+
|
8 |
+
st.title("Admin Panel")
|
9 |
+
|
10 |
+
# Login Form
|
11 |
+
login_success = False
|
12 |
+
with st.form("login_form"):
|
13 |
+
st.write("Please login to access the admin dashboard:")
|
14 |
+
username = st.text_input("Username")
|
15 |
+
password = st.text_input("Password", type="password")
|
16 |
+
login_button = st.form_submit_button("Login")
|
17 |
+
|
18 |
+
if login_button:
|
19 |
+
if username == USERNAME and password == PASSWORD:
|
20 |
+
login_success = True
|
21 |
+
st.success("Login successful!")
|
22 |
+
else:
|
23 |
+
st.error("Invalid username or password.")
|
24 |
+
|
25 |
+
# After successful login
|
26 |
+
if login_success:
|
27 |
+
# Display information about model performance
|
28 |
+
st.header("Model Performance Metrics")
|
29 |
+
|
30 |
+
model_r2_score = 0.85 # Mock R^2 Score
|
31 |
+
avg_prediction_time = 0.15 # Mock Average Prediction Time in seconds
|
32 |
+
num_predictions_made = 2000 # Mock Number of Predictions Made
|
33 |
+
|
34 |
+
st.metric(label="R² Score", value=f"{model_r2_score:.2f}")
|
35 |
+
st.metric(
|
36 |
+
label="Average Prediction Time", value=f"{avg_prediction_time:.2f} seconds"
|
37 |
+
)
|
38 |
+
st.metric(label="Total Predictions Made", value=num_predictions_made)
|
39 |
+
|
40 |
+
st.subheader("Detailed Metrics")
|
41 |
+
detailed_metrics = pd.DataFrame(
|
42 |
+
{
|
43 |
+
"Metric": ["MAE", "MSE", "RMSE", "Training Time"],
|
44 |
+
"Value": [2.5, 3.4, 1.8, "1.2 hours"],
|
45 |
+
}
|
46 |
+
)
|
47 |
+
st.table(detailed_metrics)
|
48 |
+
|
49 |
+
# Mocking prediction latency over time (example chart)
|
50 |
+
st.subheader("Prediction Latency Over Time")
|
51 |
+
latency_data = pd.DataFrame(
|
52 |
+
{
|
53 |
+
"Date": pd.date_range(end=pd.Timestamp.today(), periods=7).to_list(),
|
54 |
+
"Prediction Time (s)": np.random.uniform(0.1, 0.5, 7),
|
55 |
+
}
|
56 |
+
)
|
57 |
+
st.line_chart(latency_data.set_index("Date"))
|
58 |
|
59 |
+
# Button to simulate refreshing metrics
|
60 |
+
if st.button("Refresh Metrics"):
|
61 |
+
st.experimental_rerun()
|
62 |
+
else:
|
63 |
+
st.warning("Please login to access the admin panel.")
|
pollution_data.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
date,NO2,O3
|
2 |
+
2024-10-17,22.804605103280675,22.769159859976643
|
3 |
+
2024-10-18,23.2685,23.30733245729302
|
4 |
+
2024-10-19,23.91006441223834,23.1717142857143
|
5 |
+
2024-10-20,22.573237547892735,23.53784452296821
|
6 |
+
2024-10-21,21.1457004830918,24.020695652173934
|
7 |
+
2024-10-22,21.776579804560274,23.33588571428572
|
8 |
+
2024-10-23,21.974793814433,22.21468879668051
|
9 |
+
2024-10-24,25.51256756756757,20.91370967741937
|
python.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
from data_api_calls import get_data
|
2 |
-
|
3 |
-
get_data()
|
|
|
|
|
|
|
|
src/data_api_calls.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import codecs
|
2 |
+
import csv
|
3 |
+
import http.client
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
import urllib.request
|
8 |
+
from datetime import date, timedelta
|
9 |
+
from io import StringIO
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
WEATHER_DATA_FILE = "weather_data.csv"
|
14 |
+
POLLUTION_DATA_FILE = "pollution_data.csv"
|
15 |
+
|
16 |
+
|
17 |
+
def update_weather_data():
|
18 |
+
today = date.today().isoformat()
|
19 |
+
|
20 |
+
if os.path.exists(WEATHER_DATA_FILE):
|
21 |
+
df = pd.read_csv(WEATHER_DATA_FILE)
|
22 |
+
last_date = pd.to_datetime(df["date"]).max()
|
23 |
+
start_date = (last_date + timedelta(1)).isoformat()
|
24 |
+
else:
|
25 |
+
df = pd.DataFrame()
|
26 |
+
start_date = (date.today() - timedelta(7)).isoformat()
|
27 |
+
|
28 |
+
try:
|
29 |
+
ResultBytes = urllib.request.urlopen(
|
30 |
+
f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
|
31 |
+
)
|
32 |
+
CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))
|
33 |
+
|
34 |
+
new_data = pd.DataFrame(list(CSVText))
|
35 |
+
new_data.columns = new_data.iloc[0]
|
36 |
+
new_data = new_data[1:]
|
37 |
+
new_data = new_data.rename(columns={"datetime": "date"})
|
38 |
+
|
39 |
+
updated_df = pd.concat([df, new_data], ignore_index=True)
|
40 |
+
updated_df.drop_duplicates(subset="date", keep="last", inplace=True)
|
41 |
+
updated_df.to_csv(WEATHER_DATA_FILE, index=False)
|
42 |
+
|
43 |
+
except urllib.error.HTTPError as e:
|
44 |
+
ErrorInfo = e.read().decode()
|
45 |
+
print("Error code: ", e.code, ErrorInfo)
|
46 |
+
sys.exit()
|
47 |
+
except urllib.error.URLError as e:
|
48 |
+
ErrorInfo = e.read().decode()
|
49 |
+
print("Error code: ", e.code, ErrorInfo)
|
50 |
+
sys.exit()
|
51 |
+
|
52 |
+
|
53 |
+
def update_pollution_data():
|
54 |
+
O3 = []
|
55 |
+
NO2 = []
|
56 |
+
particles = ["NO2", "O3"]
|
57 |
+
stations = ["NL10636", "NL10639", "NL10643"]
|
58 |
+
all_dataframes = []
|
59 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
60 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
61 |
+
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
|
62 |
+
days_today = 0
|
63 |
+
days_yesterday = 1
|
64 |
+
while today != latest_date:
|
65 |
+
days_today += 1
|
66 |
+
days_yesterday += 1
|
67 |
+
for particle in particles:
|
68 |
+
for station in stations:
|
69 |
+
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
70 |
+
payload = ""
|
71 |
+
headers = {}
|
72 |
+
conn.request(
|
73 |
+
"GET",
|
74 |
+
f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
|
75 |
+
payload,
|
76 |
+
headers,
|
77 |
+
)
|
78 |
+
res = conn.getresponse()
|
79 |
+
data = res.read()
|
80 |
+
decoded_data = data.decode("utf-8")
|
81 |
+
df = pd.read_csv(StringIO(decoded_data))
|
82 |
+
df = df.filter(like="value")
|
83 |
+
all_dataframes.append(df)
|
84 |
+
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
85 |
+
values = []
|
86 |
+
for row in combined_data:
|
87 |
+
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row)
|
88 |
+
if cleaned_value: # If we successfully extract a number
|
89 |
+
values.append(
|
90 |
+
float(cleaned_value[0])
|
91 |
+
) # Convert the first match to float
|
92 |
+
|
93 |
+
# Compute the average if the values list is not empty
|
94 |
+
if values:
|
95 |
+
avg = sum(values) / len(values)
|
96 |
+
if particle == "NO2":
|
97 |
+
NO2.append(avg)
|
98 |
+
else:
|
99 |
+
O3.append(avg)
|
100 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
101 |
+
yesterday = (
|
102 |
+
date.today() - timedelta(days_yesterday)
|
103 |
+
).isoformat() + "T09:00:00Z"
|
104 |
+
|
105 |
+
avg_combined_data = pd.DataFrame(
|
106 |
+
{
|
107 |
+
"date": pd.date_range(end=date.today(), periods=len(NO2)),
|
108 |
+
"NO2": NO2,
|
109 |
+
"O3": O3,
|
110 |
+
}
|
111 |
+
)
|
112 |
+
|
113 |
+
avg_combined_data = reverse_pollution(NO2, O3, avg_combined_data)
|
114 |
+
|
115 |
+
if os.path.exists(POLLUTION_DATA_FILE):
|
116 |
+
existing_data = pd.read_csv(POLLUTION_DATA_FILE)
|
117 |
+
last_date = pd.to_datetime(existing_data["date"]).max()
|
118 |
+
new_data = avg_combined_data[avg_combined_data["date"] > last_date]
|
119 |
+
updated_data = pd.concat([existing_data, new_data], ignore_index=True)
|
120 |
+
updated_data.drop_duplicates(subset="date", keep="last", inplace=True)
|
121 |
+
else:
|
122 |
+
updated_data = avg_combined_data
|
123 |
+
|
124 |
+
updated_data.to_csv(POLLUTION_DATA_FILE, index=False)
|
125 |
+
|
126 |
+
|
127 |
+
def reverse_pollution(NO2, O3, data):
|
128 |
+
df = data
|
129 |
+
start_index = 0
|
130 |
+
while NO2:
|
131 |
+
df.loc[start_index, "NO2"] = NO2.pop()
|
132 |
+
start_index += 1
|
133 |
+
start_index = 0
|
134 |
+
while O3:
|
135 |
+
df.loc[start_index, "O3"] = O3.pop()
|
136 |
+
start_index += 1
|
137 |
+
return df
|
138 |
+
|
139 |
+
|
140 |
+
def get_combined_data():
|
141 |
+
update_weather_data()
|
142 |
+
update_pollution_data()
|
143 |
+
|
144 |
+
weather_df = pd.read_csv(WEATHER_DATA_FILE)
|
145 |
+
pollution_df = pd.read_csv(POLLUTION_DATA_FILE)
|
146 |
+
|
147 |
+
# Average NO2 and O3 values by date and add them to weather data
|
148 |
+
combined_df = pd.merge(weather_df, pollution_df, on="date", how="left")
|
149 |
+
combined_df.fillna(0, inplace=True)
|
150 |
+
|
151 |
+
# Apply scaling and renaming similar to the scale function from previous code
|
152 |
+
combined_df = combined_df.rename(
|
153 |
+
columns={
|
154 |
+
"date": "date",
|
155 |
+
"windspeed": "wind_speed",
|
156 |
+
"temp": "mean_temp",
|
157 |
+
"solarradiation": "global_radiation",
|
158 |
+
"precip": "percipitation",
|
159 |
+
"sealevelpressure": "pressure",
|
160 |
+
"visibility": "minimum_visibility",
|
161 |
+
}
|
162 |
+
)
|
163 |
+
|
164 |
+
combined_df["date"] = pd.to_datetime(combined_df["date"])
|
165 |
+
combined_df["weekday"] = combined_df["date"].dt.day_name()
|
166 |
+
|
167 |
+
combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10
|
168 |
+
combined_df["mean_temp"] = combined_df["mean_temp"] * 10
|
169 |
+
combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10
|
170 |
+
combined_df["percipitation"] = combined_df["percipitation"] * 10
|
171 |
+
combined_df["pressure"] = combined_df["pressure"] * 10
|
172 |
+
|
173 |
+
combined_df["wind_speed"] = combined_df["wind_speed"].astype(int)
|
174 |
+
combined_df["mean_temp"] = combined_df["mean_temp"].astype(int)
|
175 |
+
combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(int)
|
176 |
+
combined_df["percipitation"] = combined_df["percipitation"].astype(int)
|
177 |
+
combined_df["pressure"] = combined_df["pressure"].astype(int)
|
178 |
+
combined_df["humidity"] = combined_df["humidity"].astype(int)
|
179 |
+
combined_df["global_radiation"] = combined_df["global_radiation"].astype(int)
|
180 |
+
|
181 |
+
return combined_df
|
src/{data_loading.py → features_pipeline.py}
RENAMED
@@ -1,8 +1,12 @@
|
|
|
|
|
|
1 |
import joblib
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
|
5 |
-
from past_data_api_calls import
|
|
|
|
|
6 |
|
7 |
|
8 |
def create_features(
|
@@ -11,37 +15,6 @@ def create_features(
|
|
11 |
lag_days=7,
|
12 |
sma_days=7,
|
13 |
):
|
14 |
-
"""
|
15 |
-
Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
|
16 |
-
sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
|
17 |
-
particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
|
18 |
-
disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
|
19 |
-
validation, and test sets using the most recent dates. Prints the number of rows with missing
|
20 |
-
values dropped from the dataset.
|
21 |
-
|
22 |
-
Parameters:
|
23 |
-
- data (pd.DataFrame): The input time-series dataset.
|
24 |
-
- target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
|
25 |
-
- lag_days (int): Number of lag days to create features for (default 7).
|
26 |
-
- sma_days (int): Window size for Simple Moving Average (default 7).
|
27 |
-
- days_ahead (int): Number of days ahead to create target variables for (default 3).
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
- X_train_scaled (pd.DataFrame): Scaled training features.
|
31 |
-
- y_train_scaled (pd.DataFrame): Scaled training targets.
|
32 |
-
- X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
|
33 |
-
- y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
|
34 |
-
- X_test_scaled (pd.DataFrame): Scaled test features (365 days).
|
35 |
-
- y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
|
36 |
-
"""
|
37 |
-
import warnings
|
38 |
-
|
39 |
-
import numpy as np
|
40 |
-
import pandas as pd
|
41 |
-
from sklearn.preprocessing import StandardScaler
|
42 |
-
|
43 |
-
warnings.filterwarnings("ignore")
|
44 |
-
|
45 |
lag_features = [
|
46 |
"NO2",
|
47 |
"O3",
|
@@ -70,9 +43,7 @@ def create_features(
|
|
70 |
# Create sine and cosine transformations for 'weekday' and 'month'
|
71 |
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
|
72 |
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
|
73 |
-
data["month_sin"] = np.sin(
|
74 |
-
2 * np.pi * (data["month"] - 1) / 12
|
75 |
-
) # Adjust month to 0-11
|
76 |
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
|
77 |
|
78 |
# Create lagged features for the specified lag days
|
@@ -86,32 +57,26 @@ def create_features(
|
|
86 |
data[feature].rolling(window=sma_days).mean()
|
87 |
)
|
88 |
|
89 |
-
past_data = get_past_data()
|
90 |
# Create particle data (NO2 and O3) from the same time last year
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
data["
|
|
|
95 |
|
96 |
# 7 days before today last year
|
97 |
-
for i in range(1, lag_days+1):
|
98 |
-
data[f"O3_last_year_{i}_days_before"] = past_data["O3"].iloc[i-1]
|
99 |
-
data[f"NO2_last_year_{i}_days_before"] = past_data["NO2"].iloc[i-1]
|
100 |
|
101 |
# 3 days after today last year
|
102 |
-
data["O3_last_year_3_days_after"] = past_data["O3"].iloc[-1]
|
103 |
-
data["NO2_last_year_3_days_after"] = past_data["NO2"].iloc[-1]
|
104 |
-
|
105 |
-
# Calculate the number of rows before dropping missing values
|
106 |
-
rows_before = data.shape[0]
|
107 |
|
108 |
# Drop missing values
|
|
|
109 |
data = data.dropna().reset_index(drop=True)
|
110 |
-
|
111 |
-
# Calculate the number of rows after dropping missing values
|
112 |
rows_after = data.shape[0]
|
113 |
-
|
114 |
-
# Calculate and print the number of rows dropped
|
115 |
rows_dropped = rows_before - rows_after
|
116 |
print(f"Number of rows with missing values dropped: {rows_dropped}")
|
117 |
|
@@ -125,16 +90,11 @@ def create_features(
|
|
125 |
# Split features and targets
|
126 |
x = data[feature_cols]
|
127 |
|
128 |
-
|
129 |
-
# Initialize scalers
|
130 |
feature_scaler = joblib.load(f"scalers/feature_scaler_{target_particle}.joblib")
|
131 |
-
|
132 |
-
# Fit the scalers on the training data
|
133 |
X_scaled = feature_scaler.transform(x)
|
134 |
|
135 |
# Convert scaled data back to DataFrame for consistency
|
136 |
-
X_scaled = pd.DataFrame(
|
137 |
-
X_scaled, columns=feature_cols, index=x.index
|
138 |
-
)
|
139 |
|
140 |
return X_scaled
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
|
7 |
+
from src.past_data_api_calls import get_past_combined_data
|
8 |
+
|
9 |
+
warnings.filterwarnings("ignore")
|
10 |
|
11 |
|
12 |
def create_features(
|
|
|
15 |
lag_days=7,
|
16 |
sma_days=7,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
lag_features = [
|
19 |
"NO2",
|
20 |
"O3",
|
|
|
43 |
# Create sine and cosine transformations for 'weekday' and 'month'
|
44 |
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
|
45 |
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
|
46 |
+
data["month_sin"] = np.sin(2 * np.pi * (data["month"] - 1) / 12)
|
|
|
|
|
47 |
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
|
48 |
|
49 |
# Create lagged features for the specified lag days
|
|
|
57 |
data[feature].rolling(window=sma_days).mean()
|
58 |
)
|
59 |
|
|
|
60 |
# Create particle data (NO2 and O3) from the same time last year
|
61 |
+
past_data = get_past_combined_data()
|
62 |
|
63 |
+
# Today last year
|
64 |
+
data["O3_last_year"] = past_data["O3"].iloc[-4]
|
65 |
+
data["NO2_last_year"] = past_data["NO2"].iloc[-4]
|
66 |
|
67 |
# 7 days before today last year
|
68 |
+
for i in range(1, lag_days + 1):
|
69 |
+
data[f"O3_last_year_{i}_days_before"] = past_data["O3"].iloc[i - 1]
|
70 |
+
data[f"NO2_last_year_{i}_days_before"] = past_data["NO2"].iloc[i - 1]
|
71 |
|
72 |
# 3 days after today last year
|
73 |
+
data["O3_last_year_3_days_after"] = past_data["O3"].iloc[-1]
|
74 |
+
data["NO2_last_year_3_days_after"] = past_data["NO2"].iloc[-1]
|
|
|
|
|
|
|
75 |
|
76 |
# Drop missing values
|
77 |
+
rows_before = data.shape[0]
|
78 |
data = data.dropna().reset_index(drop=True)
|
|
|
|
|
79 |
rows_after = data.shape[0]
|
|
|
|
|
80 |
rows_dropped = rows_before - rows_after
|
81 |
print(f"Number of rows with missing values dropped: {rows_dropped}")
|
82 |
|
|
|
90 |
# Split features and targets
|
91 |
x = data[feature_cols]
|
92 |
|
93 |
+
# Scale
|
|
|
94 |
feature_scaler = joblib.load(f"scalers/feature_scaler_{target_particle}.joblib")
|
|
|
|
|
95 |
X_scaled = feature_scaler.transform(x)
|
96 |
|
97 |
# Convert scaled data back to DataFrame for consistency
|
98 |
+
X_scaled = pd.DataFrame(X_scaled, columns=feature_cols, index=x.index)
|
|
|
|
|
99 |
|
100 |
return X_scaled
|
past_data_api_calls.py → src/past_data_api_calls copy.py
RENAMED
@@ -17,7 +17,9 @@ def pollution_data():
|
|
17 |
last_year_date = date.today() - timedelta(days=365)
|
18 |
start_date = last_year_date - timedelta(days=7)
|
19 |
end_date = last_year_date + timedelta(days=3)
|
20 |
-
date_list = [
|
|
|
|
|
21 |
for current_date in date_list:
|
22 |
today = current_date.isoformat() + "T09:00:00Z"
|
23 |
yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z"
|
@@ -25,24 +27,31 @@ def pollution_data():
|
|
25 |
all_dataframes = [] # Reset for each particle
|
26 |
for station in stations:
|
27 |
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
28 |
-
payload =
|
29 |
headers = {}
|
30 |
-
conn.request(
|
|
|
|
|
|
|
|
|
|
|
31 |
res = conn.getresponse()
|
32 |
data = res.read()
|
33 |
decoded_data = data.decode("utf-8")
|
34 |
df = pd.read_csv(StringIO(decoded_data))
|
35 |
-
df = df.filter(like=
|
36 |
all_dataframes.append(df)
|
37 |
if all_dataframes:
|
38 |
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
39 |
-
combined_data.to_csv(f
|
|
|
40 |
|
41 |
def delete_csv(csvs):
|
42 |
for csv_file in csvs:
|
43 |
-
if
|
44 |
os.remove(csv_file)
|
45 |
|
|
|
46 |
def clean_values():
|
47 |
particles = ["NO2", "O3"]
|
48 |
csvs = []
|
@@ -51,25 +60,29 @@ def clean_values():
|
|
51 |
last_year_date = date.today() - timedelta(days=365)
|
52 |
start_date = last_year_date - timedelta(days=7)
|
53 |
end_date = last_year_date + timedelta(days=3)
|
54 |
-
date_list = [
|
|
|
|
|
55 |
for current_date in date_list:
|
56 |
today = current_date.isoformat() + "T09:00:00Z"
|
57 |
for particle in particles:
|
58 |
-
name = f
|
59 |
csvs.append(name)
|
60 |
for csv_file in csvs:
|
61 |
if not os.path.exists(csv_file):
|
62 |
continue # Skip if the file doesn't exist
|
63 |
values = [] # Reset values for each CSV file
|
64 |
# Open the CSV file and read the values
|
65 |
-
with open(csv_file,
|
66 |
reader = csv.reader(file)
|
67 |
for row in reader:
|
68 |
for value in row:
|
69 |
# Use regular expressions to extract numeric part
|
70 |
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
|
71 |
if cleaned_value: # If we successfully extract a number
|
72 |
-
values.append(
|
|
|
|
|
73 |
|
74 |
# Compute the average if the values list is not empty
|
75 |
if values:
|
@@ -81,16 +94,18 @@ def clean_values():
|
|
81 |
delete_csv(csvs)
|
82 |
return NO2, O3
|
83 |
|
|
|
84 |
def add_columns():
|
85 |
-
file_path =
|
86 |
df = pd.read_csv(file_path)
|
87 |
|
88 |
-
df.insert(1,
|
89 |
-
df.insert(2,
|
90 |
-
df.insert(10,
|
91 |
|
92 |
return df
|
93 |
|
|
|
94 |
def scale(data):
|
95 |
df = data
|
96 |
columns = list(df.columns)
|
@@ -104,97 +119,72 @@ def scale(data):
|
|
104 |
columns.insert(9, columns.pop(6))
|
105 |
df = df[columns]
|
106 |
|
107 |
-
df = df.rename(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
df = df
|
121 |
-
|
122 |
-
df
|
123 |
-
|
124 |
-
df[
|
125 |
-
df[
|
126 |
-
df[
|
127 |
-
|
128 |
-
df[
|
129 |
-
|
130 |
-
df[
|
131 |
-
df[
|
132 |
-
df[
|
133 |
-
df[
|
134 |
-
df[
|
|
|
|
|
135 |
|
136 |
return df
|
137 |
|
|
|
138 |
def insert_pollution(NO2, O3, data):
|
139 |
df = data
|
140 |
-
df[
|
141 |
-
df[
|
142 |
return df
|
143 |
|
|
|
144 |
def weather_data():
|
145 |
-
# Get last year's same day
|
146 |
last_year_date = date.today() - timedelta(days=365)
|
147 |
-
# Start date is 7 days prior
|
148 |
start_date = (last_year_date - timedelta(days=7)).isoformat()
|
149 |
-
# End date is 3 days ahead
|
150 |
end_date = (last_year_date + timedelta(days=3)).isoformat()
|
151 |
-
try:
|
152 |
-
ResultBytes = urllib.request.urlopen(
|
153 |
-
|
154 |
-
|
155 |
-
CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
|
156 |
-
# Saving the CSV content to a file
|
157 |
-
current_dir = os.path.dirname(os.path.realpath(__file__))
|
158 |
-
file_path = os.path.join(current_dir, 'weather_data.csv')
|
159 |
-
with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
|
160 |
-
csv_writer = csv.writer(csvfile)
|
161 |
-
csv_writer.writerows(CSVText)
|
162 |
-
|
163 |
-
except urllib.error.HTTPError as e:
|
164 |
-
ErrorInfo= e.read().decode()
|
165 |
-
print('Error code: ', e.code, ErrorInfo)
|
166 |
-
sys.exit()
|
167 |
-
except urllib.error.URLError as e:
|
168 |
-
ErrorInfo= e.read().decode()
|
169 |
-
print('Error code: ', e.code,ErrorInfo)
|
170 |
-
sys.exit()
|
171 |
|
172 |
-
def weather_data():
|
173 |
-
# Set up dates for last year: 7 days before today last year, and 3 days ahead of this day last year
|
174 |
-
today_last_year = date.today() - timedelta(365)
|
175 |
-
start_last_year = today_last_year - timedelta(8)
|
176 |
-
end_last_year = today_last_year + timedelta(2)
|
177 |
-
|
178 |
-
try:
|
179 |
-
# API call with new date range for last year
|
180 |
-
ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_last_year}/{end_last_year}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
|
181 |
-
|
182 |
# Parse the results as CSV
|
183 |
-
CSVText = csv.reader(codecs.iterdecode(ResultBytes,
|
184 |
# Saving the CSV content to a file
|
185 |
current_dir = os.path.dirname(os.path.realpath(__file__))
|
186 |
-
file_path = os.path.join(current_dir,
|
187 |
-
with open(file_path,
|
188 |
csv_writer = csv.writer(csvfile)
|
189 |
csv_writer.writerows(CSVText)
|
190 |
-
|
191 |
except urllib.error.HTTPError as e:
|
192 |
-
ErrorInfo = e.read().decode()
|
193 |
-
print(
|
194 |
sys.exit()
|
195 |
except urllib.error.URLError as e:
|
196 |
-
ErrorInfo = e.read().decode()
|
197 |
-
print(
|
198 |
sys.exit()
|
199 |
|
200 |
|
@@ -205,5 +195,5 @@ def get_past_data():
|
|
205 |
df = add_columns()
|
206 |
scaled_df = scale(df)
|
207 |
output_df = insert_pollution(NO2, O3, scaled_df)
|
208 |
-
os.remove(
|
209 |
-
return output_df
|
|
|
17 |
last_year_date = date.today() - timedelta(days=365)
|
18 |
start_date = last_year_date - timedelta(days=7)
|
19 |
end_date = last_year_date + timedelta(days=3)
|
20 |
+
date_list = [
|
21 |
+
start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)
|
22 |
+
]
|
23 |
for current_date in date_list:
|
24 |
today = current_date.isoformat() + "T09:00:00Z"
|
25 |
yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z"
|
|
|
27 |
all_dataframes = [] # Reset for each particle
|
28 |
for station in stations:
|
29 |
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
30 |
+
payload = ""
|
31 |
headers = {}
|
32 |
+
conn.request(
|
33 |
+
"GET",
|
34 |
+
f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
|
35 |
+
payload,
|
36 |
+
headers,
|
37 |
+
)
|
38 |
res = conn.getresponse()
|
39 |
data = res.read()
|
40 |
decoded_data = data.decode("utf-8")
|
41 |
df = pd.read_csv(StringIO(decoded_data))
|
42 |
+
df = df.filter(like="value")
|
43 |
all_dataframes.append(df)
|
44 |
if all_dataframes:
|
45 |
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
46 |
+
combined_data.to_csv(f"{particle}_{today}.csv", index=False)
|
47 |
+
|
48 |
|
49 |
def delete_csv(csvs):
|
50 |
for csv_file in csvs:
|
51 |
+
if os.path.exists(csv_file) and os.path.isfile(csv_file):
|
52 |
os.remove(csv_file)
|
53 |
|
54 |
+
|
55 |
def clean_values():
|
56 |
particles = ["NO2", "O3"]
|
57 |
csvs = []
|
|
|
60 |
last_year_date = date.today() - timedelta(days=365)
|
61 |
start_date = last_year_date - timedelta(days=7)
|
62 |
end_date = last_year_date + timedelta(days=3)
|
63 |
+
date_list = [
|
64 |
+
start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)
|
65 |
+
]
|
66 |
for current_date in date_list:
|
67 |
today = current_date.isoformat() + "T09:00:00Z"
|
68 |
for particle in particles:
|
69 |
+
name = f"{particle}_{today}.csv"
|
70 |
csvs.append(name)
|
71 |
for csv_file in csvs:
|
72 |
if not os.path.exists(csv_file):
|
73 |
continue # Skip if the file doesn't exist
|
74 |
values = [] # Reset values for each CSV file
|
75 |
# Open the CSV file and read the values
|
76 |
+
with open(csv_file, "r") as file:
|
77 |
reader = csv.reader(file)
|
78 |
for row in reader:
|
79 |
for value in row:
|
80 |
# Use regular expressions to extract numeric part
|
81 |
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
|
82 |
if cleaned_value: # If we successfully extract a number
|
83 |
+
values.append(
|
84 |
+
float(cleaned_value[0])
|
85 |
+
) # Convert the first match to float
|
86 |
|
87 |
# Compute the average if the values list is not empty
|
88 |
if values:
|
|
|
94 |
delete_csv(csvs)
|
95 |
return NO2, O3
|
96 |
|
97 |
+
|
98 |
def add_columns():
|
99 |
+
file_path = "weather_data.csv"
|
100 |
df = pd.read_csv(file_path)
|
101 |
|
102 |
+
df.insert(1, "NO2", None)
|
103 |
+
df.insert(2, "O3", None)
|
104 |
+
df.insert(10, "weekday", None)
|
105 |
|
106 |
return df
|
107 |
|
108 |
+
|
109 |
def scale(data):
|
110 |
df = data
|
111 |
columns = list(df.columns)
|
|
|
119 |
columns.insert(9, columns.pop(6))
|
120 |
df = df[columns]
|
121 |
|
122 |
+
df = df.rename(
|
123 |
+
columns={
|
124 |
+
"datetime": "date",
|
125 |
+
"windspeed": "wind_speed",
|
126 |
+
"temp": "mean_temp",
|
127 |
+
"solarradiation": "global_radiation",
|
128 |
+
"precip": "percipitation",
|
129 |
+
"sealevelpressure": "pressure",
|
130 |
+
"visibility": "minimum_visibility",
|
131 |
+
}
|
132 |
+
)
|
133 |
+
|
134 |
+
df["date"] = pd.to_datetime(df["date"])
|
135 |
+
df["weekday"] = df["date"].dt.day_name()
|
136 |
+
|
137 |
+
df = df.sort_values(by="date").reset_index(drop=True)
|
138 |
+
|
139 |
+
df["wind_speed"] = (df["wind_speed"] / 3.6) * 10
|
140 |
+
df["mean_temp"] = df["mean_temp"] * 10
|
141 |
+
df["minimum_visibility"] = df["minimum_visibility"] * 10
|
142 |
+
df["percipitation"] = df["percipitation"] * 10
|
143 |
+
df["pressure"] = df["pressure"]
|
144 |
+
|
145 |
+
df["wind_speed"] = df["wind_speed"].astype(int)
|
146 |
+
df["mean_temp"] = df["mean_temp"].astype(int)
|
147 |
+
df["minimum_visibility"] = df["minimum_visibility"].astype(int)
|
148 |
+
df["percipitation"] = df["percipitation"].astype(int)
|
149 |
+
df["pressure"] = df["pressure"].astype(int)
|
150 |
+
df["humidity"] = df["humidity"].astype(int)
|
151 |
+
df["global_radiation"] = df["global_radiation"].astype(int)
|
152 |
|
153 |
return df
|
154 |
|
155 |
+
|
156 |
def insert_pollution(NO2, O3, data):
|
157 |
df = data
|
158 |
+
df["NO2"] = NO2
|
159 |
+
df["O3"] = O3
|
160 |
return df
|
161 |
|
162 |
+
|
163 |
def weather_data():
|
|
|
164 |
last_year_date = date.today() - timedelta(days=365)
|
|
|
165 |
start_date = (last_year_date - timedelta(days=7)).isoformat()
|
|
|
166 |
end_date = (last_year_date + timedelta(days=3)).isoformat()
|
167 |
+
try:
|
168 |
+
ResultBytes = urllib.request.urlopen(
|
169 |
+
f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{end_date}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
|
170 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
# Parse the results as CSV
|
173 |
+
CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))
|
174 |
# Saving the CSV content to a file
|
175 |
current_dir = os.path.dirname(os.path.realpath(__file__))
|
176 |
+
file_path = os.path.join(current_dir, "past_weather_data.csv")
|
177 |
+
with open(file_path, "w", newline="", encoding="utf-8") as csvfile:
|
178 |
csv_writer = csv.writer(csvfile)
|
179 |
csv_writer.writerows(CSVText)
|
180 |
+
|
181 |
except urllib.error.HTTPError as e:
|
182 |
+
ErrorInfo = e.read().decode()
|
183 |
+
print("Error code: ", e.code, ErrorInfo)
|
184 |
sys.exit()
|
185 |
except urllib.error.URLError as e:
|
186 |
+
ErrorInfo = e.read().decode()
|
187 |
+
print("Error code: ", e.code, ErrorInfo)
|
188 |
sys.exit()
|
189 |
|
190 |
|
|
|
195 |
df = add_columns()
|
196 |
scaled_df = scale(df)
|
197 |
output_df = insert_pollution(NO2, O3, scaled_df)
|
198 |
+
os.remove("past_weather_data.csv")
|
199 |
+
return output_df
|
src/past_data_api_calls.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import codecs
|
2 |
+
import csv
|
3 |
+
import http.client
|
4 |
+
import re
|
5 |
+
import sys
|
6 |
+
import urllib.request
|
7 |
+
from datetime import date, timedelta
|
8 |
+
from io import StringIO
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
PAST_WEATHER_DATA_FILE = "weather_data.csv"
|
13 |
+
PAST_POLLUTION_DATA_FILE = "pollution_data.csv"
|
14 |
+
|
15 |
+
|
16 |
+
def get_past_weather_data():
|
17 |
+
last_year_date = date.today() - timedelta(days=365)
|
18 |
+
start_date = (last_year_date - timedelta(days=7)).isoformat()
|
19 |
+
end_date = (last_year_date + timedelta(days=3)).isoformat()
|
20 |
+
|
21 |
+
try:
|
22 |
+
ResultBytes = urllib.request.urlopen(
|
23 |
+
f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{end_date}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
|
24 |
+
)
|
25 |
+
CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))
|
26 |
+
|
27 |
+
data = pd.DataFrame(list(CSVText))
|
28 |
+
data.columns = data.iloc[0]
|
29 |
+
data = data[1:]
|
30 |
+
data = data.rename(columns={"datetime": "date"})
|
31 |
+
return data
|
32 |
+
|
33 |
+
except urllib.error.HTTPError as e:
|
34 |
+
ErrorInfo = e.read().decode()
|
35 |
+
print("Error code: ", e.code, ErrorInfo)
|
36 |
+
sys.exit()
|
37 |
+
except urllib.error.URLError as e:
|
38 |
+
ErrorInfo = e.read().decode()
|
39 |
+
print("Error code: ", e.code, ErrorInfo)
|
40 |
+
sys.exit()
|
41 |
+
|
42 |
+
|
43 |
+
def get_past_pollution_data():
|
44 |
+
O3 = []
|
45 |
+
NO2 = []
|
46 |
+
particles = ["NO2", "O3"]
|
47 |
+
stations = ["NL10636", "NL10639", "NL10643"]
|
48 |
+
all_dataframes = []
|
49 |
+
last_year_date = date.today() - timedelta(days=365)
|
50 |
+
start_date = last_year_date - timedelta(days=7)
|
51 |
+
end_date = last_year_date + timedelta(days=3)
|
52 |
+
date_list = [
|
53 |
+
start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)
|
54 |
+
]
|
55 |
+
for current_date in date_list:
|
56 |
+
today = current_date.isoformat() + "T09:00:00Z"
|
57 |
+
yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z"
|
58 |
+
for particle in particles:
|
59 |
+
all_dataframes = [] # Reset for each particle
|
60 |
+
for station in stations:
|
61 |
+
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
62 |
+
payload = ""
|
63 |
+
headers = {}
|
64 |
+
conn.request(
|
65 |
+
"GET",
|
66 |
+
f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
|
67 |
+
payload,
|
68 |
+
headers,
|
69 |
+
)
|
70 |
+
res = conn.getresponse()
|
71 |
+
data = res.read()
|
72 |
+
decoded_data = data.decode("utf-8")
|
73 |
+
df = pd.read_csv(StringIO(decoded_data))
|
74 |
+
df = df.filter(like="value")
|
75 |
+
all_dataframes.append(df)
|
76 |
+
|
77 |
+
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
78 |
+
values = []
|
79 |
+
for row in combined_data:
|
80 |
+
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row)
|
81 |
+
if cleaned_value:
|
82 |
+
values.append(float(cleaned_value[0]))
|
83 |
+
|
84 |
+
if values:
|
85 |
+
avg = sum(values) / len(values)
|
86 |
+
if particle == "NO2":
|
87 |
+
NO2.append(avg)
|
88 |
+
else:
|
89 |
+
O3.append(avg)
|
90 |
+
|
91 |
+
return NO2, O3
|
92 |
+
|
93 |
+
|
94 |
+
def get_past_combined_data():
|
95 |
+
weather_df = get_past_weather_data()
|
96 |
+
NO2_df, O3_df = get_past_pollution_data()
|
97 |
+
|
98 |
+
combined_df = weather_df
|
99 |
+
combined_df["NO2"] = NO2_df
|
100 |
+
combined_df["O3"] = O3_df
|
101 |
+
|
102 |
+
# Apply scaling and renaming similar to the scale function from previous code
|
103 |
+
combined_df = combined_df.rename(
|
104 |
+
columns={
|
105 |
+
"date": "date",
|
106 |
+
"windspeed": "wind_speed",
|
107 |
+
"temp": "mean_temp",
|
108 |
+
"solarradiation": "global_radiation",
|
109 |
+
"precip": "percipitation",
|
110 |
+
"sealevelpressure": "pressure",
|
111 |
+
"visibility": "minimum_visibility",
|
112 |
+
}
|
113 |
+
)
|
114 |
+
|
115 |
+
combined_df["date"] = pd.to_datetime(combined_df["date"])
|
116 |
+
combined_df["weekday"] = combined_df["date"].dt.day_name()
|
117 |
+
|
118 |
+
combined_df["wind_speed"] = combined_df["wind_speed"].astype(float)
|
119 |
+
combined_df["mean_temp"] = combined_df["mean_temp"].astype(float)
|
120 |
+
combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(float)
|
121 |
+
combined_df["percipitation"] = combined_df["percipitation"].astype(float)
|
122 |
+
combined_df["pressure"] = combined_df["pressure"].astype(float).round()
|
123 |
+
combined_df["humidity"] = combined_df["humidity"].astype(float).round()
|
124 |
+
combined_df["global_radiation"] = combined_df["global_radiation"].astype(float)
|
125 |
+
|
126 |
+
combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10
|
127 |
+
combined_df["mean_temp"] = combined_df["mean_temp"] * 10
|
128 |
+
combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10
|
129 |
+
combined_df["percipitation"] = combined_df["percipitation"] * 10
|
130 |
+
combined_df["pressure"] = combined_df["pressure"] * 10
|
131 |
+
|
132 |
+
combined_df["wind_speed"] = combined_df["wind_speed"].astype(float).round().astype(int)
|
133 |
+
combined_df["mean_temp"] = combined_df["mean_temp"].astype(float).round().astype(int)
|
134 |
+
combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(float).round().astype(int)
|
135 |
+
combined_df["percipitation"] = combined_df["percipitation"].astype(float).round().astype(int)
|
136 |
+
combined_df["pressure"] = combined_df["pressure"].astype(float).round().astype(int)
|
137 |
+
combined_df["humidity"] = combined_df["humidity"].astype(float).round().astype(int)
|
138 |
+
combined_df["global_radiation"] = combined_df["global_radiation"].astype(float).round().astype(int)
|
139 |
+
|
140 |
+
return combined_df
|
src/{models_loading.py → predict.py}
RENAMED
@@ -1,12 +1,15 @@
|
|
1 |
import os
|
2 |
|
3 |
import joblib
|
4 |
-
import pandas as pd
|
5 |
import streamlit as st
|
6 |
from dotenv import load_dotenv
|
7 |
from huggingface_hub import hf_hub_download, login
|
8 |
-
from src.data_loading import create_features
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
def load_model(particle):
|
11 |
load_dotenv()
|
12 |
login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN"))
|
@@ -15,21 +18,30 @@ def load_model(particle):
|
|
15 |
if particle == "O3":
|
16 |
file_name = "O3_svr_model.pkl"
|
17 |
elif particle == "NO2":
|
18 |
-
file_name == "
|
19 |
|
20 |
model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
|
21 |
model = joblib.load(model_path)
|
22 |
-
|
23 |
return model
|
24 |
|
25 |
|
26 |
-
@st.cache_resource(ttl=6 * 300) # Reruns every 6 hours
|
27 |
def run_model(particle, data):
|
28 |
input_data = create_features(data=data, target_particle=particle)
|
29 |
model = load_model(particle)
|
30 |
-
|
31 |
-
# Run the model with static input
|
32 |
prediction = model.predict(input_data)
|
33 |
target_scaler = joblib.load(f"scalers/target_scaler_{particle}.joblib")
|
34 |
prediction = target_scaler.inverse_transform(prediction)
|
35 |
return prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
import joblib
|
|
|
4 |
import streamlit as st
|
5 |
from dotenv import load_dotenv
|
6 |
from huggingface_hub import hf_hub_download, login
|
|
|
7 |
|
8 |
+
from src.data_api_calls import get_combined_data
|
9 |
+
from src.features_pipeline import create_features
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource()
|
13 |
def load_model(particle):
|
14 |
load_dotenv()
|
15 |
login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN"))
|
|
|
18 |
if particle == "O3":
|
19 |
file_name = "O3_svr_model.pkl"
|
20 |
elif particle == "NO2":
|
21 |
+
file_name == "NO2_nn_model.pkl"
|
22 |
|
23 |
model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
|
24 |
model = joblib.load(model_path)
|
|
|
25 |
return model
|
26 |
|
27 |
|
|
|
28 |
def run_model(particle, data):
|
29 |
input_data = create_features(data=data, target_particle=particle)
|
30 |
model = load_model(particle)
|
|
|
|
|
31 |
prediction = model.predict(input_data)
|
32 |
target_scaler = joblib.load(f"scalers/target_scaler_{particle}.joblib")
|
33 |
prediction = target_scaler.inverse_transform(prediction)
|
34 |
return prediction
|
35 |
+
|
36 |
+
|
37 |
+
def get_data_and_predictions():
|
38 |
+
PREDICTIONS_FILE = "predictions_history.csv"
|
39 |
+
|
40 |
+
week_data = get_combined_data()
|
41 |
+
|
42 |
+
o3_input_features = create_features(week_data, "O3")
|
43 |
+
no2_input_features = create_features(week_data, "NO2")
|
44 |
+
o3_predictions = run_model("O3", data=o3_input_features)
|
45 |
+
no2_predictions = run_model("NO2", data=no2_input_features)
|
46 |
+
|
47 |
+
return week_data, o3_predictions, no2_predictions
|
test.ipynb
CHANGED
@@ -9,34 +9,63 @@
|
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
-
"
|
13 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
]
|
15 |
}
|
16 |
],
|
17 |
"source": [
|
18 |
-
"from src.
|
19 |
-
"from
|
20 |
-
"
|
21 |
-
"from past_data_api_calls import get_past_data"
|
22 |
]
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
-
"execution_count":
|
27 |
"metadata": {},
|
28 |
"outputs": [],
|
29 |
"source": [
|
30 |
-
"
|
31 |
]
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"metadata": {},
|
37 |
"outputs": [],
|
38 |
"source": [
|
39 |
-
"
|
40 |
]
|
41 |
},
|
42 |
{
|
@@ -672,7 +701,7 @@
|
|
672 |
],
|
673 |
"metadata": {
|
674 |
"kernelspec": {
|
675 |
-
"display_name": "
|
676 |
"language": "python",
|
677 |
"name": "python3"
|
678 |
},
|
@@ -686,7 +715,7 @@
|
|
686 |
"name": "python",
|
687 |
"nbconvert_exporter": "python",
|
688 |
"pygments_lexer": "ipython3",
|
689 |
-
"version": "3.
|
690 |
}
|
691 |
},
|
692 |
"nbformat": 4,
|
|
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
+
"c:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\.venv\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
]
|
15 |
}
|
16 |
],
|
17 |
"source": [
|
18 |
+
"from src.data_api_calls import get_combined_data\n",
|
19 |
+
"from src.past_data_api_calls import get_past_combined_data\n",
|
20 |
+
"from src.predict import get_data_and_predictions"
|
|
|
21 |
]
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
"metadata": {},
|
27 |
"outputs": [],
|
28 |
"source": [
|
29 |
+
"get_past_combined_data()"
|
30 |
]
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
+
"execution_count": 2,
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [
|
37 |
+
{
|
38 |
+
"ename": "OSError",
|
39 |
+
"evalue": "[Errno 22] Invalid argument: 'NO2_2023-10-18T09:00:00Z.csv'",
|
40 |
+
"output_type": "error",
|
41 |
+
"traceback": [
|
42 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
43 |
+
"\u001b[1;31mOSError\u001b[0m Traceback (most recent call last)",
|
44 |
+
"Cell \u001b[1;32mIn[2], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m week_data, predictions_O3, predictions_NO2 \u001b[38;5;241m=\u001b[39m \u001b[43mget_data_and_predictions\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
45 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\src\\predict.py:42\u001b[0m, in \u001b[0;36mget_data_and_predictions\u001b[1;34m()\u001b[0m\n\u001b[0;32m 38\u001b[0m PREDICTIONS_FILE \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpredictions_history.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 40\u001b[0m week_data \u001b[38;5;241m=\u001b[39m get_combined_data()\n\u001b[1;32m---> 42\u001b[0m o3_input_features \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_features\u001b[49m\u001b[43m(\u001b[49m\u001b[43mweek_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mO3\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 43\u001b[0m no2_input_features \u001b[38;5;241m=\u001b[39m create_features(week_data, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNO2\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 44\u001b[0m o3_predictions \u001b[38;5;241m=\u001b[39m run_model(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO3\u001b[39m\u001b[38;5;124m\"\u001b[39m, data\u001b[38;5;241m=\u001b[39mo3_input_features)\n",
|
46 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\src\\features_pipeline.py:61\u001b[0m, in \u001b[0;36mcreate_features\u001b[1;34m(data, target_particle, lag_days, sma_days)\u001b[0m\n\u001b[0;32m 56\u001b[0m data[\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfeature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_sma_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msma_days\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 57\u001b[0m data[feature]\u001b[38;5;241m.\u001b[39mrolling(window\u001b[38;5;241m=\u001b[39msma_days)\u001b[38;5;241m.\u001b[39mmean()\n\u001b[0;32m 58\u001b[0m )\n\u001b[0;32m 60\u001b[0m \u001b[38;5;66;03m# Create particle data (NO2 and O3) from the same time last year\u001b[39;00m\n\u001b[1;32m---> 61\u001b[0m past_data \u001b[38;5;241m=\u001b[39m \u001b[43mget_past_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;66;03m# Today last year\u001b[39;00m\n\u001b[0;32m 64\u001b[0m data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO3_last_year\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m past_data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO3\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39miloc[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m4\u001b[39m]\n",
|
47 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\src\\past_data_api_calls.py:193\u001b[0m, in \u001b[0;36mget_past_data\u001b[1;34m()\u001b[0m\n\u001b[0;32m 191\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_past_data\u001b[39m():\n\u001b[0;32m 192\u001b[0m weather_data()\n\u001b[1;32m--> 193\u001b[0m \u001b[43mpollution_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 194\u001b[0m NO2, O3 \u001b[38;5;241m=\u001b[39m clean_values()\n\u001b[0;32m 195\u001b[0m df \u001b[38;5;241m=\u001b[39m add_columns()\n",
|
48 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\src\\past_data_api_calls.py:46\u001b[0m, in \u001b[0;36mpollution_data\u001b[1;34m()\u001b[0m\n\u001b[0;32m 44\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m all_dataframes:\n\u001b[0;32m 45\u001b[0m combined_data \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mconcat(all_dataframes, ignore_index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m---> 46\u001b[0m \u001b[43mcombined_data\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mparticle\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m_\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mtoday\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
|
49 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\.venv\\Lib\\site-packages\\pandas\\util\\_decorators.py:333\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 327\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[0;32m 328\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 329\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[0;32m 330\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[0;32m 331\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[0;32m 332\u001b[0m )\n\u001b[1;32m--> 333\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
50 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\.venv\\Lib\\site-packages\\pandas\\core\\generic.py:3967\u001b[0m, in \u001b[0;36mNDFrame.to_csv\u001b[1;34m(self, path_or_buf, sep, na_rep, float_format, columns, header, index, index_label, mode, encoding, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, decimal, errors, storage_options)\u001b[0m\n\u001b[0;32m 3956\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m, ABCDataFrame) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mto_frame()\n\u001b[0;32m 3958\u001b[0m formatter \u001b[38;5;241m=\u001b[39m DataFrameFormatter(\n\u001b[0;32m 3959\u001b[0m frame\u001b[38;5;241m=\u001b[39mdf,\n\u001b[0;32m 3960\u001b[0m header\u001b[38;5;241m=\u001b[39mheader,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 3964\u001b[0m decimal\u001b[38;5;241m=\u001b[39mdecimal,\n\u001b[0;32m 3965\u001b[0m )\n\u001b[1;32m-> 3967\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mDataFrameRenderer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mformatter\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_csv\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 3968\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath_or_buf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3969\u001b[0m \u001b[43m \u001b[49m\u001b[43mlineterminator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlineterminator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3970\u001b[0m \u001b[43m \u001b[49m\u001b[43msep\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msep\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3971\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3972\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3973\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcompression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3974\u001b[0m \u001b[43m \u001b[49m\u001b[43mquoting\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquoting\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3975\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3976\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex_label\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindex_label\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3977\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3978\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunksize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunksize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3979\u001b[0m \u001b[43m \u001b[49m\u001b[43mquotechar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquotechar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3980\u001b[0m \u001b[43m \u001b[49m\u001b[43mdate_format\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdate_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3981\u001b[0m \u001b[43m \u001b[49m\u001b[43mdoublequote\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdoublequote\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3982\u001b[0m \u001b[43m \u001b[49m\u001b[43mescapechar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mescapechar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3983\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3984\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
51 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\.venv\\Lib\\site-packages\\pandas\\io\\formats\\format.py:1014\u001b[0m, in \u001b[0;36mDataFrameRenderer.to_csv\u001b[1;34m(self, path_or_buf, encoding, sep, columns, index_label, mode, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, errors, storage_options)\u001b[0m\n\u001b[0;32m 993\u001b[0m created_buffer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 995\u001b[0m csv_formatter \u001b[38;5;241m=\u001b[39m CSVFormatter(\n\u001b[0;32m 996\u001b[0m path_or_buf\u001b[38;5;241m=\u001b[39mpath_or_buf,\n\u001b[0;32m 997\u001b[0m lineterminator\u001b[38;5;241m=\u001b[39mlineterminator,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1012\u001b[0m formatter\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfmt,\n\u001b[0;32m 1013\u001b[0m )\n\u001b[1;32m-> 1014\u001b[0m \u001b[43mcsv_formatter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msave\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1016\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m created_buffer:\n\u001b[0;32m 1017\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(path_or_buf, StringIO)\n",
|
52 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\.venv\\Lib\\site-packages\\pandas\\io\\formats\\csvs.py:251\u001b[0m, in \u001b[0;36mCSVFormatter.save\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 247\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 248\u001b[0m \u001b[38;5;124;03mCreate the writer & save.\u001b[39;00m\n\u001b[0;32m 249\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 250\u001b[0m \u001b[38;5;66;03m# apply compression and byte/text conversion\u001b[39;00m\n\u001b[1;32m--> 251\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 256\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 257\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 258\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m handles:\n\u001b[0;32m 259\u001b[0m \u001b[38;5;66;03m# Note: self.encoding is irrelevant here\u001b[39;00m\n\u001b[0;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mwriter \u001b[38;5;241m=\u001b[39m csvlib\u001b[38;5;241m.\u001b[39mwriter(\n\u001b[0;32m 261\u001b[0m handles\u001b[38;5;241m.\u001b[39mhandle,\n\u001b[0;32m 262\u001b[0m lineterminator\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlineterminator,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 267\u001b[0m quotechar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquotechar,\n\u001b[0;32m 268\u001b[0m )\n\u001b[0;32m 270\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_save()\n",
|
53 |
+
"File \u001b[1;32mc:\\Users\\elikl\\Documents\\Uni\\yr3\\ML for industry\\utrecht-pollution-prediction\\.venv\\Lib\\site-packages\\pandas\\io\\common.py:873\u001b[0m, in \u001b[0;36mget_handle\u001b[1;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[0;32m 868\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m 869\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[0;32m 870\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[0;32m 871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[0;32m 872\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[1;32m--> 873\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[0;32m 874\u001b[0m handle,\n\u001b[0;32m 875\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[0;32m 876\u001b[0m encoding\u001b[38;5;241m=\u001b[39mioargs\u001b[38;5;241m.\u001b[39mencoding,\n\u001b[0;32m 877\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[0;32m 878\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 879\u001b[0m )\n\u001b[0;32m 880\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 881\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m 882\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n",
|
54 |
+
"\u001b[1;31mOSError\u001b[0m: [Errno 22] Invalid argument: 'NO2_2023-10-18T09:00:00Z.csv'"
|
55 |
+
]
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"week_data, predictions_O3, predictions_NO2 = get_data_and_predictions()"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": null,
|
65 |
"metadata": {},
|
66 |
"outputs": [],
|
67 |
"source": [
|
68 |
+
"week_data"
|
69 |
]
|
70 |
},
|
71 |
{
|
|
|
701 |
],
|
702 |
"metadata": {
|
703 |
"kernelspec": {
|
704 |
+
"display_name": ".venv",
|
705 |
"language": "python",
|
706 |
"name": "python3"
|
707 |
},
|
|
|
715 |
"name": "python",
|
716 |
"nbconvert_exporter": "python",
|
717 |
"pygments_lexer": "ipython3",
|
718 |
+
"version": "3.11.8"
|
719 |
}
|
720 |
},
|
721 |
"nbformat": 4,
|
test.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
from models_loading import run_model
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
weather_data.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
date,temp,humidity,precip,windspeed,sealevelpressure,visibility,solarradiation
|
2 |
+
2024-10-17,16.9,86.0,0.6,18.4,1010.0,37.1,43.0
|
3 |
+
2024-10-18,15.5,97.3,3.9,7.6,1014.0,4.5,42.9
|
4 |
+
2024-10-19,14.7,89.9,1.6,14.8,1014.1,22.8,43.5
|
5 |
+
2024-10-20,15.5,83.8,0.5,29.5,1016.0,41.5,0.0
|
6 |
+
2024-10-21,14.4,92.7,4.3,21.2,1020.6,22.0,27.8
|
7 |
+
2024-10-22,11.4,92.8,4.9,19.4,1026.9,22.6,57.0
|
8 |
+
2024-10-23,11.2,97.3,0.0,13.0,1032.8,6.5,12.5
|
9 |
+
2024-10-24,10.4,94.0,0.0,20.5,1024.7,13.0,62.5
|