File size: 15,263 Bytes
eeaf86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from data_loading import create_features_and_targets\n",
    "from data_api_calls import get_data\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset = pd.read_csv(\"dataset.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of rows with missing values dropped: 7\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "Found array with 0 sample(s) (shape=(0, 92)) while a minimum of 1 is required by StandardScaler.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m X, y \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_features_and_targets\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m      2\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m      3\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtarget_particle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mNO2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      4\u001b[0m \u001b[43m    \u001b[49m\u001b[43mlag_days\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m6\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      5\u001b[0m \u001b[43m    \u001b[49m\u001b[43msma_days\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m6\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      6\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdays_ahead\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      7\u001b[0m \u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Desktop/utrecht-pollution-prediction/data_loading.py:214\u001b[0m, in \u001b[0;36mcreate_features_and_targets\u001b[0;34m(data, target_particle, lag_days, sma_days, days_ahead)\u001b[0m\n\u001b[1;32m    211\u001b[0m target_scaler \u001b[38;5;241m=\u001b[39m StandardScaler()\n\u001b[1;32m    213\u001b[0m \u001b[38;5;66;03m# Fit the scalers on the training data\u001b[39;00m\n\u001b[0;32m--> 214\u001b[0m X_scaled \u001b[38;5;241m=\u001b[39m \u001b[43mfeature_scaler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    215\u001b[0m y_scaled \u001b[38;5;241m=\u001b[39m target_scaler\u001b[38;5;241m.\u001b[39mfit_transform(y)\n\u001b[1;32m    217\u001b[0m \u001b[38;5;66;03m# Convert scaled data back to DataFrame for consistency\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/utils/_set_output.py:313\u001b[0m, in \u001b[0;36m_wrap_method_output.<locals>.wrapped\u001b[0;34m(self, X, *args, **kwargs)\u001b[0m\n\u001b[1;32m    311\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(f)\n\u001b[1;32m    312\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapped\u001b[39m(\u001b[38;5;28mself\u001b[39m, X, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m--> 313\u001b[0m     data_to_wrap \u001b[38;5;241m=\u001b[39m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    314\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data_to_wrap, \u001b[38;5;28mtuple\u001b[39m):\n\u001b[1;32m    315\u001b[0m         \u001b[38;5;66;03m# only wrap the first output for cross decomposition\u001b[39;00m\n\u001b[1;32m    316\u001b[0m         return_tuple \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m    317\u001b[0m             _wrap_data_with_container(method, data_to_wrap[\u001b[38;5;241m0\u001b[39m], X, \u001b[38;5;28mself\u001b[39m),\n\u001b[1;32m    318\u001b[0m             \u001b[38;5;241m*\u001b[39mdata_to_wrap[\u001b[38;5;241m1\u001b[39m:],\n\u001b[1;32m    319\u001b[0m         )\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/base.py:1098\u001b[0m, in \u001b[0;36mTransformerMixin.fit_transform\u001b[0;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[1;32m   1083\u001b[0m         warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m   1084\u001b[0m             (\n\u001b[1;32m   1085\u001b[0m                 \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis object (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) has a `transform`\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1093\u001b[0m             \u001b[38;5;167;01mUserWarning\u001b[39;00m,\n\u001b[1;32m   1094\u001b[0m         )\n\u001b[1;32m   1096\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m y \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m   1097\u001b[0m     \u001b[38;5;66;03m# fit method of arity 1 (unsupervised transformation)\u001b[39;00m\n\u001b[0;32m-> 1098\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfit_params\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mtransform(X)\n\u001b[1;32m   1099\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1100\u001b[0m     \u001b[38;5;66;03m# fit method of arity 2 (supervised transformation)\u001b[39;00m\n\u001b[1;32m   1101\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfit(X, y, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mfit_params)\u001b[38;5;241m.\u001b[39mtransform(X)\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/preprocessing/_data.py:878\u001b[0m, in \u001b[0;36mStandardScaler.fit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m    876\u001b[0m \u001b[38;5;66;03m# Reset internal state before fitting\u001b[39;00m\n\u001b[1;32m    877\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset()\n\u001b[0;32m--> 878\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpartial_fit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msample_weight\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/base.py:1473\u001b[0m, in \u001b[0;36m_fit_context.<locals>.decorator.<locals>.wrapper\u001b[0;34m(estimator, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1466\u001b[0m     estimator\u001b[38;5;241m.\u001b[39m_validate_params()\n\u001b[1;32m   1468\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m config_context(\n\u001b[1;32m   1469\u001b[0m     skip_parameter_validation\u001b[38;5;241m=\u001b[39m(\n\u001b[1;32m   1470\u001b[0m         prefer_skip_nested_validation \u001b[38;5;129;01mor\u001b[39;00m global_skip_validation\n\u001b[1;32m   1471\u001b[0m     )\n\u001b[1;32m   1472\u001b[0m ):\n\u001b[0;32m-> 1473\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfit_method\u001b[49m\u001b[43m(\u001b[49m\u001b[43mestimator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/preprocessing/_data.py:914\u001b[0m, in \u001b[0;36mStandardScaler.partial_fit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m    882\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Online computation of mean and std on X for later scaling.\u001b[39;00m\n\u001b[1;32m    883\u001b[0m \n\u001b[1;32m    884\u001b[0m \u001b[38;5;124;03mAll of X is processed as a single batch. This is intended for cases\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    911\u001b[0m \u001b[38;5;124;03m    Fitted scaler.\u001b[39;00m\n\u001b[1;32m    912\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    913\u001b[0m first_call \u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mn_samples_seen_\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 914\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    915\u001b[0m \u001b[43m    \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    916\u001b[0m \u001b[43m    \u001b[49m\u001b[43maccept_sparse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcsr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcsc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    917\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mFLOAT_DTYPES\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    918\u001b[0m \u001b[43m    \u001b[49m\u001b[43mforce_all_finite\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mallow-nan\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    919\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfirst_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    920\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    921\u001b[0m n_features \u001b[38;5;241m=\u001b[39m X\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m    923\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m sample_weight \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/base.py:633\u001b[0m, in \u001b[0;36mBaseEstimator._validate_data\u001b[0;34m(self, X, y, reset, validate_separately, cast_to_ndarray, **check_params)\u001b[0m\n\u001b[1;32m    631\u001b[0m         out \u001b[38;5;241m=\u001b[39m X, y\n\u001b[1;32m    632\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m no_val_X \u001b[38;5;129;01mand\u001b[39;00m no_val_y:\n\u001b[0;32m--> 633\u001b[0m     out \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mX\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mcheck_params\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    634\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m no_val_X \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m no_val_y:\n\u001b[1;32m    635\u001b[0m     out \u001b[38;5;241m=\u001b[39m _check_y(y, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mcheck_params)\n",
      "File \u001b[0;32m~/anaconda3/envs/ml-industry/lib/python3.12/site-packages/sklearn/utils/validation.py:1087\u001b[0m, in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_writeable, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[1;32m   1085\u001b[0m     n_samples \u001b[38;5;241m=\u001b[39m _num_samples(array)\n\u001b[1;32m   1086\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m n_samples \u001b[38;5;241m<\u001b[39m ensure_min_samples:\n\u001b[0;32m-> 1087\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m   1088\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFound array with \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m sample(s) (shape=\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m) while a\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1089\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m minimum of \u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m is required\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1090\u001b[0m             \u001b[38;5;241m%\u001b[39m (n_samples, array\u001b[38;5;241m.\u001b[39mshape, ensure_min_samples, context)\n\u001b[1;32m   1091\u001b[0m         )\n\u001b[1;32m   1093\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ensure_min_features \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m array\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[1;32m   1094\u001b[0m     n_features \u001b[38;5;241m=\u001b[39m array\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m]\n",
      "\u001b[0;31mValueError\u001b[0m: Found array with 0 sample(s) (shape=(0, 92)) while a minimum of 1 is required by StandardScaler."
     ]
    }
   ],
   "source": [
    "test_data = create_features_and_targets(\n",
    "    data=dataset,\n",
    "    target_particle=\"NO2\",\n",
    "    lag_days=7,\n",
    "    sma_days=7,\n",
    "    days_ahead=3,\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ml-industry",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}