File size: 8,062 Bytes
386e426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO

import pandas as pd


def pollution_data():
    particles = ["NO2", "O3"]
    stations = ["NL10636", "NL10639", "NL10643"]
    last_year_date = date.today() - timedelta(days=365)
    start_date = last_year_date - timedelta(days=7)
    end_date = last_year_date + timedelta(days=3)
    date_list = [start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)]
    for current_date in date_list:
        today = current_date.isoformat() + "T09:00:00Z"
        yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z"
        for particle in particles:
            all_dataframes = []  # Reset for each particle
            for station in stations:
                conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
                payload = ''
                headers = {}
                conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
                res = conn.getresponse()
                data = res.read()
                decoded_data = data.decode("utf-8")
                df = pd.read_csv(StringIO(decoded_data))
                df = df.filter(like='value')
                all_dataframes.append(df)
            if all_dataframes:
                combined_data = pd.concat(all_dataframes, ignore_index=True)
                combined_data.to_csv(f'{particle}_{today}.csv', index=False)

def delete_csv(csvs):
    for csv_file in csvs:
        if(os.path.exists(csv_file) and os.path.isfile(csv_file)): 
            os.remove(csv_file)

def clean_values():
    particles = ["NO2", "O3"]
    csvs = []
    NO2 = []
    O3 = []
    last_year_date = date.today() - timedelta(days=365)
    start_date = last_year_date - timedelta(days=7)
    end_date = last_year_date + timedelta(days=3)
    date_list = [start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)]
    for current_date in date_list:
        today = current_date.isoformat() + "T09:00:00Z"
        for particle in particles:
            name = f'{particle}_{today}.csv'
            csvs.append(name)
    for csv_file in csvs:
        if not os.path.exists(csv_file):
            continue  # Skip if the file doesn't exist
        values = []  # Reset values for each CSV file
        # Open the CSV file and read the values
        with open(csv_file, 'r') as file:
            reader = csv.reader(file)
            for row in reader:
                for value in row:
                    # Use regular expressions to extract numeric part
                    cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
                    if cleaned_value:  # If we successfully extract a number
                        values.append(float(cleaned_value[0]))  # Convert the first match to float

        # Compute the average if the values list is not empty
        if values:
            avg = sum(values) / len(values)
            if "NO2" in csv_file:
                NO2.append(avg)
            else:
                O3.append(avg)
    delete_csv(csvs)
    return NO2, O3

def add_columns():
    file_path = 'weather_data.csv'
    df = pd.read_csv(file_path)

    df.insert(1, 'NO2', None)
    df.insert(2, 'O3', None)
    df.insert(10, 'weekday', None)

    return df

def scale(data):
    df = data
    columns = list(df.columns)

    columns.insert(3, columns.pop(6))
    df = df[columns]

    columns.insert(5, columns.pop(9))
    df = df[columns]

    columns.insert(9, columns.pop(6))
    df = df[columns]

    df = df.rename(columns={
        'datetime':'date',
        'windspeed': 'wind_speed',
        'temp': 'mean_temp',
        'solarradiation':'global_radiation',
        'precip':'percipitation',
        'sealevelpressure':'pressure',
        'visibility':'minimum_visibility'
    })

    df['date'] = pd.to_datetime(df['date'])
    df['weekday'] = df['date'].dt.day_name()

    df = df.sort_values(by='date').reset_index(drop=True)

    df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
    df['mean_temp'] = df['mean_temp'] * 10
    df['minimum_visibility'] = df['minimum_visibility'] * 10
    df['percipitation'] = df['percipitation'] * 10
    df['pressure'] = df['pressure']

    df['wind_speed'] = df['wind_speed'].astype(int)
    df['mean_temp'] = df['mean_temp'].astype(int)
    df['minimum_visibility'] = df['minimum_visibility'].astype(int)
    df['percipitation'] = df['percipitation'].astype(int)
    df['pressure'] = df['pressure'].astype(int)
    df['humidity'] = df['humidity'].astype(int)
    df['global_radiation'] = df['global_radiation'].astype(int)

    return df

def insert_pollution(NO2, O3, data):
    df = data
    df['NO2'] = NO2
    df['O3'] = O3
    return df

def weather_data():
    # Get last year's same day
    last_year_date = date.today() - timedelta(days=365)
    # Start date is 7 days prior
    start_date = (last_year_date - timedelta(days=7)).isoformat()
    # End date is 3 days ahead
    end_date = (last_year_date + timedelta(days=3)).isoformat()
    try: 
        ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{end_date}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
        
        # Parse the results as CSV
        CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
        # Saving the CSV content to a file
        current_dir = os.path.dirname(os.path.realpath(__file__))
        file_path = os.path.join(current_dir, 'weather_data.csv')
        with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
              csv_writer = csv.writer(csvfile)
              csv_writer.writerows(CSVText)
    
    except urllib.error.HTTPError  as e:
        ErrorInfo= e.read().decode() 
        print('Error code: ', e.code, ErrorInfo)
        sys.exit()
    except  urllib.error.URLError as e:
        ErrorInfo= e.read().decode() 
        print('Error code: ', e.code,ErrorInfo)
        sys.exit()

def weather_data():
    # Set up dates for last year: 7 days before today last year, and 3 days ahead of this day last year
    today_last_year = date.today() - timedelta(365)
    start_last_year = today_last_year - timedelta(8)
    end_last_year = today_last_year + timedelta(2)
    
    try: 
        # API call with new date range for last year
        ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_last_year}/{end_last_year}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
        
        # Parse the results as CSV
        CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
        # Saving the CSV content to a file
        current_dir = os.path.dirname(os.path.realpath(__file__))
        file_path = os.path.join(current_dir, 'weather_data.csv')
        with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerows(CSVText)
    
    except urllib.error.HTTPError as e:
        ErrorInfo = e.read().decode() 
        print('Error code: ', e.code, ErrorInfo)
        sys.exit()
    except urllib.error.URLError as e:
        ErrorInfo = e.read().decode() 
        print('Error code: ', e.code, ErrorInfo)
        sys.exit()


def get_past_data():
    weather_data()
    pollution_data()
    NO2, O3 = clean_values()
    df = add_columns()
    scaled_df = scale(df)
    output_df = insert_pollution(NO2, O3, scaled_df)
    os.remove('weather_data.csv')
    return output_df