import streamlit as st from transformers import MBartForConditionalGeneration, MBart50TokenizerFast @st.cache_resource def load_model(): tokenizer = MBart50TokenizerFast.from_pretrained("MahmutCanBoran/mbart-audi-diagnosis-agent") model = MBartForConditionalGeneration.from_pretrained("MahmutCanBoran/mbart-audi-diagnosis-agent") return tokenizer, model tokenizer, model = load_model() st.title("🔧 Audi AI Diagnosis Agent") st.markdown("Enter your Audi issue in **English**, and the AI will try to diagnose it.") text = st.text_area("🔍 What's the problem?", "") if st.button("🧠 Diagnose"): if not text.strip(): st.warning("Please enter a vehicle problem.") else: inputs = tokenizer( text, return_tensors="pt", truncation=True, padding="max_length", max_length=128 ).to(model.device) output_ids = model.generate( **inputs, max_length=128, num_beams=4, early_stopping=True, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"] ) result = tokenizer.decode(output_ids[0], skip_special_tokens=True) st.success("🔧 AI Diagnosis:") st.markdown(f"**{result}**")