File size: 10,665 Bytes
3cdae16
 
ff12ba7
3cdae16
 
 
 
 
 
 
 
 
 
 
 
ff12ba7
3cdae16
 
ff12ba7
 
5d4e1e8
ff12ba7
 
3cdae16
4d0c4ea
 
3cdae16
4d0c4ea
3cdae16
 
 
 
 
 
ff12ba7
4d0c4ea
 
3cdae16
4d0c4ea
ff12ba7
3cdae16
 
 
4d0c4ea
3cdae16
 
 
 
 
 
ff12ba7
 
 
3cdae16
 
 
ff12ba7
 
3cdae16
ff12ba7
3cdae16
4d0c4ea
ff12ba7
3cdae16
4d0c4ea
ff12ba7
3cdae16
ff12ba7
 
3cdae16
 
 
ff12ba7
 
4d0c4ea
 
 
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
4d0c4ea
 
 
 
 
 
 
 
3cdae16
 
 
ff12ba7
 
 
 
4d0c4ea
3cdae16
4d0c4ea
3cdae16
 
 
 
 
4d0c4ea
3cdae16
ff12ba7
3cdae16
 
 
ff12ba7
9ffb23b
3cdae16
 
 
ff12ba7
9ffb23b
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff12ba7
 
 
 
3cdae16
 
 
 
 
 
 
4d0c4ea
3cdae16
 
ff12ba7
3cdae16
 
4d0c4ea
3cdae16
 
 
 
 
 
ff12ba7
 
 
 
 
 
3cdae16
 
 
 
 
 
ff12ba7
 
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffb23b
3cdae16
 
 
 
 
 
 
ff12ba7
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff12ba7
 
 
 
 
 
 
 
3cdae16
 
 
 
 
 
 
 
4d0c4ea
3cdae16
 
 
 
 
 
 
 
 
 
 
ff12ba7
9ffb23b
3cdae16
 
 
 
ff12ba7
 
3cdae16
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
import numpy as np
import spaces # This is a special module for Hugging Face Spaces, not needed for local execution
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re

# Load Kontext model from your local path
MAX_SEED = np.iinfo(np.int32).max

# Use the local path for the base model as in your test.py
pipe = FluxKontextPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Kontext-dev", 
    torch_dtype=torch.bfloat16
).to("cuda")

# Load LoRA data from our custom JSON file
with open("kontext_loras.json", "r") as file:
    data = json.load(file)
    # Add default values for keys that might be missing, to prevent errors
    flux_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
            "prompt": item.get("prompt", f"Turn this image into {item['title']} style."),
            # The following keys are kept for compatibility with the original demo structure,
            # but our simplified logic doesn't heavily rely on them.
            "lora_type": item.get("lora_type", "flux"),
            "lora_scale_config": item.get("lora_scale", 1.0), # Default scale set to 1.0
            "prompt_placeholder": item.get("prompt_placeholder", "You can edit the prompt here..."),
        }
        for item in data
    ]
print(f"Loaded {len(flux_loras_raw)} LoRAs from kontext_loras.json")

def update_selection(selected_state: gr.SelectData, flux_loras):
    """Update UI when a LoRA is selected"""
    if selected_state.index >= len(flux_loras):
        return "### No LoRA selected", gr.update(), None, gr.update()
    
    selected_lora = flux_loras[selected_state.index]
    lora_repo = selected_lora["repo"]
    default_prompt = selected_lora.get("prompt")
    
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"

    optimal_scale = selected_lora.get("lora_scale_config", 1.0)
    print("Selected Style: ", selected_lora['title'])
    print("Optimal Scale: ", optimal_scale)
    return updated_text, gr.update(value=default_prompt), selected_state.index, optimal_scale

# This wrapper is kept for compatibility with the Gradio event triggers
def infer_with_lora_wrapper(input_image, prompt, selected_index, lora_state, custom_lora, seed=0, guidance_scale=2.5, num_inference_steps=28, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Wrapper function to handle state serialization"""
    # The 'custom_lora' and 'lora_state' arguments are no longer used but kept in the signature
    return infer_with_lora(input_image, prompt, selected_index, seed, guidance_scale, num_inference_steps, lora_scale, flux_loras, progress)

@spaces.GPU # This decorator is only for Hugging Face Spaces hardware, not needed for local execution
def infer_with_lora(input_image, prompt, selected_index, seed=0, guidance_scale=2.5, num_inference_steps=28, lora_scale=1.0, flux_loras=None,  progress=gr.Progress(track_tqdm=True)):
    """Generate image with selected LoRA"""
    global pipe
    
    # The seed is now always taken directly from the input. Randomization has been removed.
    
    # Unload any previous LoRA to ensure a clean state
    if "selected_lora" in pipe.get_active_adapters():
        pipe.unload_lora_weights()
    
    # Determine which LoRA to use from our gallery
    lora_to_use = None
    if selected_index is not None and flux_loras and selected_index < len(flux_loras):
        lora_to_use = flux_loras[selected_index]
    
    if lora_to_use:
        print(f"Applying LoRA: {lora_to_use['title']}")
        try:
            # Load LoRA directly from the Hugging Face Hub
            pipe.load_lora_weights(
                lora_to_use["repo"], 
                weight_name=lora_to_use["weights"], 
                adapter_name="selected_lora"
            )
            pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
            print(f"Loaded {lora_to_use['repo']} with scale {lora_scale}")
            
        except Exception as e:
            print(f"Error loading LoRA: {e}")

    # Use the prompt from the textbox directly.
    final_prompt = prompt
    print(f"Using prompt: {final_prompt}")

    input_image = input_image.convert("RGB")
    
    try:
        image = pipe(
            image=input_image,
            width=input_image.size[0],
            height=input_image.size[1],
            prompt=final_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=torch.Generator().manual_seed(seed)
        ).images[0]
        
        # The seed value is no longer returned, as it's not being changed.
        return image, lora_scale
    
    except Exception as e:
        print(f"Error during inference: {e}")
        # Return an error state for all outputs
        return None, lora_scale

# CSS styling
css = """
#main_app {
    display: flex;
    gap: 20px;
}
#box_column {
    min-width: 400px;
}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}  
#selected_lora {
    color: #2563eb;
    font-weight: bold;
}
#prompt {
    flex-grow: 1;
}
#run_button {
    background: linear-gradient(45deg, #2563eb, #3b82f6);
    color: white;
    border: none;
    padding: 8px 16px;
    border-radius: 6px;
    font-weight: bold;
}
.custom_lora_card {
    background: #f8fafc;
    border: 1px solid #e2e8f0;
    border-radius: 8px;
    padding: 12px;
    margin: 8px 0;
}
#gallery{
    overflow: scroll !important
}
/* Custom CSS to ensure the input image is fully visible */
#input_image_display div[data-testid="image"] img {
    object-fit: contain !important;
}
"""

# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"])) as demo:
    gr_flux_loras = gr.State(value=flux_loras_raw)
    
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/spaces/kontext-community/FLUX.1-Kontext-portrait/resolve/main/dora_kontext.png" alt="LoRA"> Kontext-Style LoRA Explorer</h1>""",
        elem_id="title",
    )
    gr.Markdown("A demo for the style LoRAs from the [Kontext-Style](https://huggingface.co/Kontext-Style) 🤗")
    
    selected_state = gr.State(value=None)
    # The following states are no longer used by the simplified logic but kept for component structure
    custom_loaded_lora = gr.State(value=None)
    lora_state = gr.State(value=1.0)
    
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                input_image = gr.Image(
                    label="Upload a picture of yourself", 
                    type="pil", 
                    height=300,
                    elem_id="input_image_display"
                )
                gallery = gr.Gallery(
                    label="Pick a LoRA",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                    height=400,
                    object_fit="contain"
                )
                
                custom_model = gr.Textbox(
                    label="Or enter a custom HuggingFace FLUX LoRA", 
                    placeholder="e.g., username/lora-name",
                    visible=False
                )
                custom_model_card = gr.HTML(visible=False)
                custom_model_button = gr.Button("Remove custom LoRA", visible=False)
        
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Editing Prompt",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="opt - describe the person/subject, e.g. 'a man with glasses and a beard'",
                    elem_id="prompt"
                )
                run_button = gr.Button("Generate", elem_id="run_button")
            
            result = gr.Image(label="Generated Image", interactive=False, height=512)
            
            with gr.Accordion("Advanced Settings", open=False):
                lora_scale = gr.Slider(
                    label="LoRA Scale",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=1.0,
                    info="Controls the strength of the LoRA effect"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.5,
                )
                num_inference_steps = gr.Slider(
                    label="Timesteps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=28,
                    info="Number of inference steps"
                )
            
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )

    # Event handlers
    # The custom model inputs are no longer needed as we've hidden them.
    
    gallery.select(
        fn=update_selection,
        inputs=[gr_flux_loras],
        outputs=[prompt_title, prompt, selected_state, lora_scale],
        show_progress=False
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_with_lora_wrapper,
        inputs=[input_image, prompt, selected_state, lora_state, custom_loaded_lora, seed, guidance_scale, num_inference_steps, lora_scale, gr_flux_loras],
        outputs=[result, lora_state]
    )
    
    # Initialize gallery
    demo.load(
        fn=lambda loras: ([(item["image"], item["title"]) for item in loras], loras), 
        inputs=[gr_flux_loras], 
        outputs=[gallery, gr_flux_loras]
    )

demo.queue(default_concurrency_limit=None)
demo.launch()