File size: 7,758 Bytes
bf5116f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np


def note_detection_with_onset_offset_regress(frame_output, onset_output, 
    onset_shift_output, offset_output, offset_shift_output, velocity_output,
    frame_threshold):
    """Process prediction matrices to note events information.
    First, detect onsets with onset outputs. Then, detect offsets
    with frame and offset outputs.
    
    Args:
      frame_output: (frames_num,)
      onset_output: (frames_num,)
      onset_shift_output: (frames_num,)
      offset_output: (frames_num,)
      offset_shift_output: (frames_num,)
      velocity_output: (frames_num,)
      frame_threshold: float

    Returns: 
      output_tuples: list of [bgn, fin, onset_shift, offset_shift, normalized_velocity], 
      e.g., [
        [1821, 1909, 0.47498, 0.3048533, 0.72119445], 
        [1909, 1947, 0.30730522, -0.45764327, 0.64200014], 
        ...]
    """
    output_tuples = []
    bgn = None
    frame_disappear = None
    offset_occur = None

    for i in range(onset_output.shape[0]):
        if onset_output[i] == 1:
            """Onset detected"""
            if bgn:
                """Consecutive onsets. E.g., pedal is not released, but two 
                consecutive notes being played."""
                fin = max(i - 1, 0)
                output_tuples.append([bgn, fin, onset_shift_output[bgn], 
                    0, velocity_output[bgn]])
                frame_disappear, offset_occur = None, None
            bgn = i

        if bgn and i > bgn:
            """If onset found, then search offset"""
            if frame_output[i] <= frame_threshold and not frame_disappear:
                """Frame disappear detected"""
                frame_disappear = i

            if offset_output[i] == 1 and not offset_occur:
                """Offset detected"""
                offset_occur = i

            if frame_disappear:
                if offset_occur and offset_occur - bgn > frame_disappear - offset_occur:
                    """bgn --------- offset_occur --- frame_disappear"""
                    fin = offset_occur
                else:
                    """bgn --- offset_occur --------- frame_disappear"""
                    fin = frame_disappear
                output_tuples.append([bgn, fin, onset_shift_output[bgn], 
                    offset_shift_output[fin], velocity_output[bgn]])
                bgn, frame_disappear, offset_occur = None, None, None

            if bgn and (i - bgn >= 600 or i == onset_output.shape[0] - 1):
                """Offset not detected"""
                fin = i
                output_tuples.append([bgn, fin, onset_shift_output[bgn], 
                    offset_shift_output[fin], velocity_output[bgn]])
                bgn, frame_disappear, offset_occur = None, None, None

    # Sort pairs by onsets
    output_tuples.sort(key=lambda pair: pair[0])

    return output_tuples


def pedal_detection_with_onset_offset_regress(frame_output, offset_output, 
    offset_shift_output, frame_threshold):
    """Process prediction array to pedal events information.
    
    Args:
      frame_output: (frames_num,)
      offset_output: (frames_num,)
      offset_shift_output: (frames_num,)
      frame_threshold: float

    Returns: 
      output_tuples: list of [bgn, fin, onset_shift, offset_shift], 
      e.g., [
        [1821, 1909, 0.4749851, 0.3048533], 
        [1909, 1947, 0.30730522, -0.45764327], 
        ...]
    """
    output_tuples = []
    bgn = None
    frame_disappear = None
    offset_occur = None

    for i in range(1, frame_output.shape[0]):
        if frame_output[i] >= frame_threshold and frame_output[i] > frame_output[i - 1]:
            """Pedal onset detected"""
            if bgn:
                pass
            else:
                bgn = i

        if bgn and i > bgn:
            """If onset found, then search offset"""
            if frame_output[i] <= frame_threshold and not frame_disappear:
                """Frame disappear detected"""
                frame_disappear = i

            if offset_output[i] == 1 and not offset_occur:
                """Offset detected"""
                offset_occur = i

            if offset_occur:
                fin = offset_occur
                output_tuples.append([bgn, fin, 0., offset_shift_output[fin]])
                bgn, frame_disappear, offset_occur = None, None, None

            if frame_disappear and i - frame_disappear >= 10:
                """offset not detected but frame disappear"""
                fin = frame_disappear
                output_tuples.append([bgn, fin, 0., offset_shift_output[fin]])
                bgn, frame_disappear, offset_occur = None, None, None

    # Sort pairs by onsets
    output_tuples.sort(key=lambda pair: pair[0])

    return output_tuples


###### Google's onsets and frames post processing. Only used for comparison ######
def onsets_frames_note_detection(frame_output, onset_output, offset_output, 
    velocity_output, threshold):
    """Process pedal prediction matrices to note events information. onset_ouput 
    is used to detect the presence of notes. frame_output is used to detect the 
    offset of notes.
    
    Args:
      frame_output: (frames_num,)
      onset_output: (frames_num,)
      threshold: float
    
    Returns: 
      bgn_fin_pairs: list of [bgn, fin, velocity]. E.g. 
        [[1821, 1909, 0.47498, 0.72119445], 
         [1909, 1947, 0.30730522, 0.64200014], 
         ...]
    """
    output_tuples = []

    loct = None
    for i in range(onset_output.shape[0]):
        # Use onset_output is used to detect the presence of notes
        if onset_output[i] > threshold:
            if loct:
                output_tuples.append([loct, i, velocity_output[loct]])
            loct = i
        if loct and i > loct:
            # Use frame_output is used to detect the offset of notes
            if frame_output[i] <= threshold:
                output_tuples.append([loct, i, velocity_output[loct]])
                loct = None

    output_tuples.sort(key=lambda pair: pair[0])

    return output_tuples


def onsets_frames_pedal_detection(frame_output, offset_output, frame_threshold):
    """Process pedal prediction matrices to pedal events information.
    
    Args:
      frame_output: (frames_num,)
      offset_output: (frames_num,)
      offset_shift_output: (frames_num,)
      frame_threshold: float

    Returns: 
      output_tuples: list of [bgn, fin], 
      e.g., [
        [1821, 1909], 
        [1909, 1947], 
        ...]
    """
    output_tuples = []
    bgn = None
    frame_disappear = None
    offset_occur = None

    for i in range(1, frame_output.shape[0]):
        if frame_output[i] >= frame_threshold and frame_output[i] > frame_output[i - 1]:
            if bgn:
                pass
            else:
                bgn = i

        if bgn and i > bgn:
            """If onset found, then search offset"""
            if frame_output[i] <= frame_threshold and not frame_disappear:
                """Frame disappear detected"""
                frame_disappear = i

            if offset_output[i] == 1 and not offset_occur:
                """Offset detected"""
                offset_occur = i

            if offset_occur:
                fin = offset_occur
                output_tuples.append([bgn, fin])
                bgn, frame_disappear, offset_occur = None, None, None

            if frame_disappear and i - frame_disappear >= 10:
                """offset not detected but frame disappear"""
                fin = frame_disappear
                output_tuples.append([bgn, fin])
                bgn, frame_disappear, offset_occur = None, None, None

    # Sort pairs by onsets
    output_tuples.sort(key=lambda pair: pair[0])

    return output_tuples