GitHub Actions
Deploy to Hugging Face Space: product-image-update-port-1
7c4d825
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import spaces
# Simple GPU function to ensure Zero GPU detection
@spaces.GPU
def gpu_available():
import torch
return torch.cuda.is_available()
import os
import sys
import json
import time
import re
import logging
import traceback
import subprocess
from datetime import datetime
from typing import List, Dict, Optional, Union
from contextlib import asynccontextmanager
import torch
import uvicorn
import threading
import requests
import gradio
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
# ----------------------------------------------------------------------
# PATH SETUP
# ----------------------------------------------------------------------
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, script_dir)
# ----------------------------------------------------------------------
# LOCAL IMPORTS
# ----------------------------------------------------------------------
from src.utils import (
ProcessingContext,
ProcessingResponse,
ProcessedImage,
setup_logging,
get_system_info,
cleanup_memory,
custom_dumps,
LOG_LEVEL_MAP,
EMOJI_MAP
)
from src.models.model_loader import (
ensure_models_loaded,
check_hardware_environment,
MODELS_LOADED,
LOAD_ERROR,
DEVICE
)
from src.pipeline import run_functions_in_sequence, PIPELINE_STEPS
# ----------------------------------------------------------------------
# CONFIGURATION
# ----------------------------------------------------------------------
from src.config import (
API_TITLE,
API_VERSION,
API_DESCRIPTION,
API_HOST,
API_PORT,
GPU_DURATION_LONG,
STATUS_SUCCESS,
STATUS_ERROR,
STATUS_PROCESSED,
STATUS_NOT_PROCESSED,
ERROR_NO_VALID_URLS,
HTTP_OK,
HTTP_BAD_REQUEST,
HTTP_INTERNAL_SERVER_ERROR
)
# ----------------------------------------------------------------------
# IMPORT TEST CONFIGURATION
# ----------------------------------------------------------------------
try:
from tests.config import RUN_TESTS
except ImportError:
try:
sys.path.insert(0, os.path.join(script_dir, 'tests'))
from config import RUN_TESTS
except ImportError:
RUN_TESTS = False
print("Warning: Could not import RUN_TESTS from tests.config, defaulting to False")
# ----------------------------------------------------------------------
# PYDANTIC MODELS
# ----------------------------------------------------------------------
class ImageRequest(BaseModel):
urls: Union[str, List[str]] = Field(..., description="Image URL(s)")
product_type: str = Field("General", description="Product type")
options: Optional[Dict] = Field(default_factory=dict, description="Processing options")
class ShopifyWebhook(BaseModel):
data: List = Field(..., description="Shopify webhook data")
class HealthResponse(BaseModel):
status: str
timestamp: float
device: str
models_loaded: bool
gpu_available: bool = False
system_info: Dict
# ----------------------------------------------------------------------
# LIFESPAN MANAGEMENT
# ----------------------------------------------------------------------
@asynccontextmanager
async def lifespan(app: FastAPI):
setup_logging()
logging.info(f"{EMOJI_MAP['INFO']} Starting {API_TITLE} v{API_VERSION}")
# Initialize app state for quota tracking
app.state.quota_tracker = {
"requests": [],
"last_quota_error": None,
"total_gpu_seconds_used": 0,
"quota_recovery": {
"base_quota": 300, # seconds
"refill_rate": 30, # real seconds per GPU second
"half_life": 7200, # 2 hours in seconds
"last_recovery_check": time.time()
},
"rate_limiting": {
"requests_by_ip": {}, # Track requests per IP
"last_quota_error_time": 0,
"quota_cooldown_duration": 1800, # 30 minutes cooldown after quota error
"min_request_interval": 30, # Minimum 30 seconds between requests after quota error
"infrastructure_quota_state": "available", # available, exhausted, recovering
"infrastructure_quota_reset_time": 0,
"global_quota_exhausted_at": 0, # Track when global quota was exhausted
"global_consecutive_errors": 0 # Track consecutive global quota errors
}
}
check_hardware_environment()
# Load models FIRST
try:
ensure_models_loaded()
if os.getenv("SPACE_ID"):
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment - models will be loaded on first request")
else:
if MODELS_LOADED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded successfully")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Models not fully loaded")
# Run GPU initialization for Spaces
if os.getenv("SPACE_ID"):
try:
init_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialization completed")
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted (Zero GPU not ready yet) - this is normal during startup")
logging.info("GPU will be initialized on first request")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization failed: {error_msg}")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models: {str(e)}")
# Now run tests after models are loaded
# Skip tests in Zero GPU if SKIP_STARTUP_TEST is set
skip_startup_test = os.getenv("SKIP_STARTUP_TEST", "false").lower() == "true"
if RUN_TESTS and os.environ.get("IN_PYTEST") != "true" and not skip_startup_test:
logging.info(f"{EMOJI_MAP['INFO']} Running tests at startup...")
# Run a simple test that calls the endpoint after server starts
def run_endpoint_test():
logging.info(f"{EMOJI_MAP['INFO']} Starting endpoint test with RUN_TESTS={RUN_TESTS}")
# Configuration for retries - increased for Zero GPU warming up
max_retries = 5
retry_delay = 60 # seconds - increased from 30
initial_delay = 45 # seconds - increased from 30
# Test payload
payload = {
"data": [
[{"url": "https://cdn.shopify.com/s/files/1/0505/0928/3527/files/hugging_face_test_image_shirt_product_type.jpg"}],
"Shirt"
]
}
# In Zero GPU environments, wait longer and handle GPU task abort gracefully
if os.getenv("SPACE_ID"):
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment detected - waiting {initial_delay}s for GPU to warm up...")
time.sleep(initial_delay) # Initial wait for Zero GPU environment to be ready
logging.info(f"{EMOJI_MAP['INFO']} Running full processing test with enhanced retry logic (max {max_retries} attempts)")
for retry in range(max_retries):
try:
logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint (attempt {retry + 1}/{max_retries})...")
response = requests.post(
"http://localhost:7860/api/rb_and_crop",
json=payload,
timeout=180 # Longer timeout for Zero GPU
)
if response.status_code == 200:
data = response.json()
if "processed_images" in data and data["processed_images"]:
img = data["processed_images"][0]
img_status = img.get('status')
if img_status == STATUS_PROCESSED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}")
if img.get('base64_image'):
logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully")
logging.info(f"{EMOJI_MAP['SUCCESS']} Full image processing test completed successfully")
break # Success, exit retry loop
elif img_status == STATUS_ERROR:
error_detail = img.get('error', 'Unknown error')
if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted during processing (attempt {retry + 1}/{max_retries})")
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is warming up - this is expected during startup")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to stabilize...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {error_detail}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images")
elif response.status_code == 503:
# GPU resources temporarily unavailable
logging.warning(f"{EMOJI_MAP['WARNING']} GPU resources unavailable (503), will retry...")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to become available...")
time.sleep(retry_delay)
continue
elif response.status_code == 500:
# Check if it's a GPU abort error
try:
error_data = response.json()
error_detail = error_data.get('error', '')
if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted (500): {error_detail}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is still warming up. Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Server error (500): {error_detail}")
except:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status 500: {response.text[:200]}")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}")
if response.text:
try:
error_data = response.json()
logging.error(f"Error details: {error_data.get('error', 'Unknown error')}")
except:
logging.error(f"Response: {response.text[:200]}")
except requests.exceptions.Timeout:
logging.warning(f"{EMOJI_MAP['WARNING']} Request timeout on attempt {retry + 1} - GPU might be initializing")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg or "503" in error_msg or "Connection refused" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} Connection/GPU error on attempt {retry + 1}: {error_msg}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU warming up. Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test error: {error_msg}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Will retry after {retry_delay}s...")
time.sleep(retry_delay)
continue
# Final health check only runs if we exhausted all retries without success
# The 'break' statement above ensures we only reach here if test failed
if retry == max_retries - 1:
logging.warning(f"{EMOJI_MAP['WARNING']} Full test failed after {max_retries} attempts")
logging.info(f"{EMOJI_MAP['INFO']} This is normal for Zero GPU during startup - the GPU needs time to warm up")
try:
response = requests.get("http://localhost:7860/health", timeout=10)
if response.status_code == 200:
data = response.json()
logging.info(f"{EMOJI_MAP['SUCCESS']} Health check passed - service is running and ready")
logging.info(f"Device: {data.get('device')}, Models loaded: {data.get('models_loaded')}")
logging.info(f"{EMOJI_MAP['INFO']} The GPU will be fully initialized on the first real request")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Health check returned status {response.status_code}")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Health check failed: {str(e)}")
logging.info(f"{EMOJI_MAP['INFO']} Service is available and will handle requests normally once GPU warms up")
else:
# Non-Zero GPU environment - run full test after shorter delay
time.sleep(10) # Wait for server to fully start
try:
logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint...")
# Normal timeout for non-Zero GPU environments
response = requests.post(
"http://localhost:7860/api/rb_and_crop",
json=payload,
timeout=120
)
if response.status_code == 200:
data = response.json()
if "processed_images" in data and data["processed_images"]:
img = data["processed_images"][0]
img_status = img.get('status')
if img_status == STATUS_PROCESSED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}")
if img.get('base64_image'):
logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully")
elif img_status == STATUS_ERROR:
logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {img.get('error', 'Unknown error')}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}")
if response.text:
try:
error_data = response.json()
logging.error(f"Error details: {error_data.get('error', 'Unknown error')}")
except:
logging.error(f"Response: {response.text[:200]}")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Test error: {str(e)}")
# Run test in background thread
import threading
test_thread = threading.Thread(target=run_endpoint_test, daemon=True)
test_thread.start()
yield
logging.info(f"{EMOJI_MAP['INFO']} API shutdown initiated")
cleanup_memory()
# ----------------------------------------------------------------------
# FASTAPI APP
# ----------------------------------------------------------------------
app = FastAPI(
title=API_TITLE,
version=API_VERSION,
description=API_DESCRIPTION,
docs_url="/api/docs",
redoc_url="/api/redoc",
lifespan=lifespan
)
# ----------------------------------------------------------------------
# MIDDLEWARE
# ----------------------------------------------------------------------
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ----------------------------------------------------------------------
# GPU INITIALIZATION
# ----------------------------------------------------------------------
@spaces.GPU(duration=GPU_DURATION_LONG)
def init_gpu():
"""Initialize GPU for Spaces environment"""
try:
logging.info(f"{EMOJI_MAP['INFO']} Initializing GPU...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception as e:
logging.warning(f"IPC collect failed, continuing anyway: {e}")
# Test GPU availability
test_tensor = torch.tensor([1.0]).cuda()
del test_tensor
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU is available and working")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} CUDA not available in GPU context")
return True
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted - Zero GPU not ready")
else:
logging.error(f"{EMOJI_MAP['ERROR']} GPU initialization error: {error_msg}")
raise
# ----------------------------------------------------------------------
# HELPER FUNCTIONS
# ----------------------------------------------------------------------
def parse_retry_time_from_error(error_message: str) -> Optional[int]:
"""Parse retry time from GPU quota error messages"""
patterns = [
r"retry in (\d+):(\d+):(\d+)", # "retry in 0:06:53"
r"Please retry in (\d+):(\d+):(\d+)", # "Please retry in 0:06:53"
r"retry after (\d+)s", # "retry after 900s"
r"retry_after: (\d+)s", # "retry_after: 900s"
]
for pattern in patterns:
match = re.search(pattern, error_message)
if match:
if len(match.groups()) == 3:
# Format: H:MM:SS
hours, minutes, seconds = map(int, match.groups())
return hours * 3600 + minutes * 60 + seconds
else:
# Format: seconds
return int(match.group(1))
# If no specific time found, return default based on error type
if "quota" in error_message.lower() or "limit" in error_message.lower():
return 900 # Default 15 minutes for quota errors
return None
def calculate_quota_recovery(tracker: Dict, current_time: float) -> Dict:
"""Calculate current quota recovery status based on HF ZeroGPU mechanics"""
recovery_info = tracker.get("quota_recovery", {})
# PRO users get 1500s, free users get 300s, not logged in get 180s
# We'll assume 300s as default (logged in free user)
base_quota = recovery_info.get("base_quota", 300)
refill_rate = 30 # 1 GPU second per 30 real seconds (confirmed)
half_life = 7200 # 2 hours in seconds (confirmed)
max_quota = 600 # Maximum quota cap (confirmed)
# Get recent requests (last 8 hours to account for multiple half-lives)
cutoff_time = current_time - (half_life * 4) # 8 hours
recent_requests = [r for r in tracker.get("requests", []) if r["timestamp"] > cutoff_time]
# Calculate effective usage with half-life decay
effective_usage = 0
for req in recent_requests:
if req.get("success", False):
age = current_time - req["timestamp"]
# Apply half-life decay: usage_weight = 2^(-age/half_life)
# This means usage halves every 2 hours
decay_factor = 2 ** (-age / half_life)
effective_usage += req.get("duration", 0) * decay_factor
# Find the oldest request to calculate recovery
oldest_request_time = min([r["timestamp"] for r in recent_requests], default=current_time)
time_since_oldest = current_time - oldest_request_time
# Calculate recovered quota (1 GPU second per 30 real seconds)
recovered_quota = time_since_oldest / refill_rate
# Calculate available quota considering all factors
# Available = base_quota - decayed_usage + recovered_quota
available_from_decay = base_quota - effective_usage
available_with_recovery = available_from_decay + recovered_quota
# Apply maximum cap
estimated_available = min(max(0, available_with_recovery), max_quota)
# Calculate time to recover specific amounts
deficit = max(0, effective_usage - recovered_quota)
time_to_60s = max(0, (60 - estimated_available) * refill_rate) if estimated_available < 60 else 0
time_to_full = max(0, deficit * refill_rate)
return {
"estimated_available_quota": estimated_available,
"effective_usage": effective_usage,
"recovered_quota": recovered_quota,
"time_to_60s_quota": time_to_60s,
"time_to_full_recovery": time_to_full,
"refill_rate_info": "1 GPU second per 30 real seconds",
"half_life_hours": half_life / 3600,
"max_quota_cap": max_quota,
"recent_requests_count": len(recent_requests),
"quota_formula": "min(base_quota - decayed_usage + recovered_quota, 600)"
}
def calculate_retry_after_from_quota(error_message: str) -> int:
"""Calculate appropriate retry-after time based on quota information"""
# Try to extract requested vs available GPU seconds
pattern = r"(\d+)s left vs\. (\d+)s requested"
match = re.search(pattern, error_message)
if match:
left = int(match.group(1))
requested = int(match.group(2))
deficit = requested - left
# ZeroGPU refills at 1 GPU second per 30 real seconds
# Add some buffer time
retry_seconds = (deficit * 30) + 60 # Add 1 minute buffer
# Cap at reasonable limits
return min(retry_seconds, 3600) # Max 1 hour
# Default to parsed time or 15 minutes
parsed_time = parse_retry_time_from_error(error_message)
return parsed_time if parsed_time else 900
def estimate_quota_needed(num_images: int, product_type: str = "General") -> float:
# Smart estimation based on actual log analysis: 5.21s average
base_time_per_image = 6.0 # Slight buffer over 5.21s actual average
# Realistic complexity multipliers
complexity_multipliers = {
"General": 1.0,
"Shirt": 1.1,
"Dress": 1.2,
"Jacket": 1.3,
"Shoes": 1.1,
"Accessories": 0.9
}
multiplier = complexity_multipliers.get(product_type, 1.0)
estimated_time = num_images * base_time_per_image * multiplier
# Smart safety buffer: smaller for small batches, larger for big batches
if num_images <= 3:
safety_factor = 1.1 # 10% buffer for small batches
elif num_images <= 10:
safety_factor = 1.2 # 20% buffer for medium batches
else:
safety_factor = 1.3 # 30% buffer for large batches
return estimated_time * safety_factor
def calculate_processing_quota_limit(available_quota: float, safety_margin: float = 0.9) -> Dict:
"""Calculate how many images can be processed with current quota"""
# Reserve 10% of quota as safety margin
usable_quota = available_quota * safety_margin
# Average processing time per image (conservative estimate)
avg_time_per_image = 18 # seconds (includes model loading, processing, etc.)
max_images = int(usable_quota / avg_time_per_image)
return {
"available_quota": available_quota,
"usable_quota": usable_quota,
"safety_margin": safety_margin,
"avg_time_per_image": avg_time_per_image,
"max_processable_images": max_images,
"estimated_usage": max_images * avg_time_per_image,
"quota_after_processing": available_quota - (max_images * avg_time_per_image)
}
def should_trigger_quota_recovery(available_quota: float, requested_images: int, product_type: str = "General") -> Dict:
"""Determine if processing should be stopped to trigger quota recovery"""
estimated_needed = estimate_quota_needed(requested_images, product_type)
# Conservative threshold - if we need more than 90% of available quota, trigger recovery
quota_threshold = available_quota * 0.9
should_wait = estimated_needed > quota_threshold
if should_wait:
# Calculate 2.5 hour wait time for full recovery
full_recovery_wait = 9000 # 2.5 hours in seconds
return {
"should_wait": True,
"reason": "quota_conservation",
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"quota_threshold": quota_threshold,
"recovery_wait_seconds": full_recovery_wait,
"recovery_wait_hours": full_recovery_wait / 3600,
"requested_images": requested_images,
"message": f"Processing {requested_images} images needs {estimated_needed}s but only {available_quota:.0f}s available. Triggering 2.5h recovery wait."
}
return {
"should_wait": False,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"quota_threshold": quota_threshold,
"requested_images": requested_images,
"safe_to_process": True
}
def validate_image_count_for_quota(available_quota: float, image_count: int, product_type: str = "General") -> Dict:
estimated_needed = estimate_quota_needed(image_count, product_type)
# Smart thresholds based on batch size and available quota
if available_quota < 30:
# Very low quota - be conservative
safety_buffer = 15
max_usage_percent = 0.6
elif available_quota < 100:
# Medium quota - moderate safety
safety_buffer = 20
max_usage_percent = 0.75
else:
# High quota - allow more efficient usage
safety_buffer = 30
max_usage_percent = 0.85
usable_quota = max(0, available_quota - safety_buffer)
max_safe_images = int(usable_quota / 8) # Realistic: 8s per image with buffer
# Smart validation: reject only if really necessary
if (estimated_needed > usable_quota or
estimated_needed > (available_quota * max_usage_percent) or
available_quota < 25): # Minimum 25s to do anything useful
return {
"valid": False,
"reason": "quota_insufficient",
"image_count": image_count,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"safety_buffer": safety_buffer,
"max_usage_percent": int(max_usage_percent * 100),
"max_safe_images": max_safe_images,
"recommended_action": "wait_for_quota_recovery",
"message": f"Smart quota protection: {image_count} images need {estimated_needed:.1f}s but only {available_quota:.1f}s available. Max safe: {max_safe_images} images."
}
return {
"valid": True,
"image_count": image_count,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"quota_after_processing": available_quota - estimated_needed,
"efficiency": f"{(estimated_needed/available_quota)*100:.1f}%",
"safe_to_process": True
}
def check_rate_limiting(client_ip: str, request_id: str = None) -> Dict:
"""Check if request should be rate limited"""
current_time = time.time()
if not hasattr(app, "state") or not hasattr(app.state, "quota_tracker"):
return {"allowed": True, "reason": "no_tracking"}
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
# Check per-IP quota recovery
requests_by_ip = rate_limits.get("requests_by_ip", {})
if client_ip in requests_by_ip:
ip_data = requests_by_ip[client_ip]
# Apply HF ZeroGPU quota calculation with half-life decay
# Get all GPU usage history for this IP
usage_history = ip_data.get("usage_history", [])
# Calculate effective usage with half-life decay (2 hour half-life)
effective_used = 0
half_life = 7200 # 2 hours
for usage in usage_history:
age = current_time - usage["timestamp"]
if age < 28800: # Only consider last 8 hours (4 half-lives)
decay_factor = 2 ** (-age / half_life)
effective_used += usage["gpu_seconds"] * decay_factor
# Calculate recovery based on time since last usage
last_gpu_usage = ip_data.get("last_gpu_usage", current_time)
time_since_last = current_time - last_gpu_usage
recovered = time_since_last / 30 # 1 GPU second per 30 real seconds
# Apply quota formula: available = min(base - decayed_usage + recovered, 600)
base_quota = 300 # Standard logged-in user quota
max_quota = 600 # Maximum cap
available_quota = min(max(0, base_quota - effective_used + recovered), max_quota)
# Update IP data with calculated values
ip_data["effective_gpu_seconds_used"] = effective_used
ip_data["available_quota"] = available_quota
# Log the calculation for debugging
logging.info(f"{EMOJI_MAP['INFO']} Quota calculation for IP {client_ip}: effective_used={effective_used:.1f}, recovered={recovered:.1f}, available={available_quota:.1f}")
# Check if this IP is in quota recovery
quota_recovery_until = ip_data.get("quota_recovery_until", 0)
if current_time < quota_recovery_until:
# Check if we have enough available quota now
if available_quota >= 60: # Enough for a typical request
ip_data["quota_recovery_until"] = 0
logging.info(f"{EMOJI_MAP['SUCCESS']} Quota recovery completed for IP {client_ip}. Available: {available_quota:.1f} GPU seconds")
else:
time_remaining = int(quota_recovery_until - current_time)
return {
"allowed": False,
"reason": "quota_cooldown",
"wait_time_seconds": time_remaining,
"message": f"GPU quota exhausted. Available: {available_quota:.0f}s, Need: 60s. Recovery in {time_remaining}s ({time_remaining//60} minutes).",
"quota_exceeded": True,
"available_quota": available_quota,
"cooldown_until": datetime.fromtimestamp(quota_recovery_until).isoformat()
}
elif quota_recovery_until > 0 and current_time >= quota_recovery_until:
# Recovery period has passed - check if we actually have quota now
if available_quota < 60:
# Still not enough quota - infrastructure might be exhausted
consecutive_errors = ip_data.get("consecutive_quota_errors", 0)
if consecutive_errors >= 2:
# Multiple failures - suggest longer wait
new_recovery_time = 5400 # 90 minutes
ip_data["quota_recovery_until"] = current_time + new_recovery_time
logging.warning(f"{EMOJI_MAP['WARNING']} Infrastructure quota appears exhausted for IP {client_ip}. Extended recovery: {new_recovery_time//60} minutes")
return {
"allowed": False,
"reason": "infrastructure_exhausted",
"wait_time_seconds": new_recovery_time,
"message": f"Infrastructure quota exhausted. Extended recovery needed: {new_recovery_time//60} minutes.",
"quota_exceeded": True,
"infrastructure_issue": True
}
else:
# Clear the recovery flag
ip_data["quota_recovery_until"] = 0
logging.info(f"{EMOJI_MAP['INFO']} Quota recovery period ended for IP {client_ip}. Available: {available_quota:.1f} GPU seconds")
# Check minimum interval between requests
last_request_time = ip_data.get("last_request", 0)
min_interval = rate_limits.get("min_request_interval", 30)
if current_time - last_request_time < min_interval:
wait_time = int(min_interval - (current_time - last_request_time))
return {
"allowed": False,
"reason": "rate_limited",
"wait_time_seconds": wait_time,
"message": f"Rate limited. Please wait {wait_time} seconds between requests."
}
# Return quota information
return {"allowed": True, "available_quota": available_quota}
# Check for duplicate requests (same IP + same request within 5 seconds)
if request_id and client_ip in requests_by_ip:
recent_requests = requests_by_ip.get(client_ip, {}).get("recent_request_ids", [])
# Clean old request IDs (older than 10 seconds)
recent_requests = [(rid, t) for rid, t in recent_requests if current_time - t < 10]
# Check for duplicate
for rid, req_time in recent_requests:
if rid == request_id and current_time - req_time < 5:
return {
"allowed": False,
"reason": "duplicate_request",
"wait_time_seconds": 5,
"message": "Duplicate request detected. Please wait before retrying."
}
return {"allowed": True, "available_quota": 300} # Default quota if no tracking
def update_rate_limiting(client_ip: str, request_id: str = None, quota_error: bool = False, gpu_seconds_used: float = None, retry_after_override: int = None):
"""Update rate limiting state with per-IP quota tracking"""
current_time = time.time()
if not hasattr(app, "state") or not hasattr(app.state, "quota_tracker"):
return
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
requests_by_ip = rate_limits.get("requests_by_ip", {})
# Initialize IP data if not exists
if client_ip not in requests_by_ip:
requests_by_ip[client_ip] = {
"first_request": current_time,
"last_request": current_time,
"request_count": 1,
"recent_request_ids": [],
"usage_history": [], # Track individual usage events with timestamps
"last_gpu_usage": current_time,
"consecutive_quota_errors": 0
}
else:
requests_by_ip[client_ip]["last_request"] = current_time
requests_by_ip[client_ip]["request_count"] += 1
# Update GPU usage tracking with history
if gpu_seconds_used:
# Add to usage history for half-life calculations
usage_history = requests_by_ip[client_ip].get("usage_history", [])
usage_history.append({
"timestamp": current_time,
"gpu_seconds": gpu_seconds_used
})
# Keep only last 8 hours of history (4 half-lives)
cutoff_time = current_time - 28800
usage_history = [u for u in usage_history if u["timestamp"] > cutoff_time]
requests_by_ip[client_ip]["usage_history"] = usage_history
requests_by_ip[client_ip]["last_gpu_usage"] = current_time
# Handle quota error - calculate proper recovery time
if quota_error:
# Calculate effective GPU usage with half-life decay
usage_history = requests_by_ip[client_ip].get("usage_history", [])
effective_used = 0
half_life = 7200 # 2 hours
for usage in usage_history:
age = current_time - usage["timestamp"]
if age < 28800: # Last 8 hours
decay_factor = 2 ** (-age / half_life)
effective_used += usage["gpu_seconds"] * decay_factor
# Calculate how much quota we have available
last_gpu_usage = requests_by_ip[client_ip].get("last_gpu_usage", current_time)
time_since_last = current_time - last_gpu_usage
recovered = time_since_last / 30
base_quota = 300 # Standard user quota
max_quota = 600 # Maximum cap
available = min(max(0, base_quota - effective_used + recovered), max_quota)
# Calculate recovery time needed
target_quota = 60 # Need at least 60 seconds for a batch
if retry_after_override:
recovery_time = retry_after_override
elif available < target_quota:
# Calculate time to recover to target quota
deficit = target_quota - available
recovery_time = int(deficit * 30) # 30 real seconds per GPU second
recovery_time = max(recovery_time, 1800) # Minimum 30 minutes
else:
recovery_time = 1800 # Default 30 minutes
quota_recovery_until = current_time + recovery_time
requests_by_ip[client_ip]["quota_recovery_until"] = quota_recovery_until
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded for IP {client_ip}. Recovery time: {recovery_time}s ({recovery_time//60} minutes)")
logging.info(f"Effective usage: {effective_used:.1f}s, Available: {available:.1f}s, Target: {target_quota}s")
logging.info(f"Recovery until: {datetime.fromtimestamp(quota_recovery_until).isoformat()}")
# Add request ID if provided
if request_id:
recent_ids = requests_by_ip[client_ip].get("recent_request_ids", [])
recent_ids.append((request_id, current_time))
# Keep only last 10 request IDs
requests_by_ip[client_ip]["recent_request_ids"] = recent_ids[-10:]
# Clean up old IP data (older than 2 hours)
cutoff_time = current_time - 7200
requests_by_ip = {
ip: data for ip, data in requests_by_ip.items()
if data["last_request"] > cutoff_time
}
# Update state
rate_limits["requests_by_ip"] = requests_by_ip
app.state.quota_tracker["rate_limiting"] = rate_limits
def get_client_ip(request: Request) -> str:
"""Extract client IP from request"""
# Check for forwarded headers first
forwarded_for = request.headers.get("x-forwarded-for")
if forwarded_for:
# Take the first IP in the chain
return forwarded_for.split(",")[0].strip()
# Check other common headers
real_ip = request.headers.get("x-real-ip")
if real_ip:
return real_ip
# Fallback to client host
return request.client.host if request.client else "unknown"
def generate_request_id(urls: Union[str, List[str]], product_type: str) -> str:
"""Generate a unique request ID for deduplication"""
import hashlib
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
# Create hash from sorted URLs and product type
content = "|".join(sorted(url_list)) + "|" + product_type
return hashlib.md5(content.encode()).hexdigest()[:12]
def check_quota_availability(urls: Union[str, List[str]], product_type: str) -> Dict:
"""Check if current quota is sufficient for the request"""
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
num_images = len(url_list)
estimated_needed = estimate_quota_needed(num_images, product_type)
current_time = time.time()
result = {
"num_images": num_images,
"estimated_gpu_seconds_needed": estimated_needed,
"quota_sufficient": True,
"recommended_action": "proceed",
"wait_time_seconds": 0
}
# Check if we have quota tracking available
if hasattr(app, "state") and hasattr(app.state, "quota_tracker"):
recovery_info = calculate_quota_recovery(app.state.quota_tracker, current_time)
available = recovery_info["estimated_available_quota"]
result.update({
"estimated_available_quota": available,
"quota_recovery_info": recovery_info
})
if estimated_needed > available:
result.update({
"quota_sufficient": False,
"recommended_action": "wait",
"wait_time_seconds": int((estimated_needed - available) * 30), # 30 seconds per GPU second
"shortage_gpu_seconds": estimated_needed - available
})
return result
def _process_images_impl(urls: Union[str, List[str]], product_type: str) -> Dict:
start_time = time.time()
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
if not url_list:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS)
# Import build_keywords function to generate keywords based on product type
from src.processing.bounding_box.bounding_box import build_keywords
# Generate keywords for this product type
keywords = build_keywords(product_type)
contexts = [ProcessingContext(url=url, product_type=product_type, keywords=keywords) for url in url_list]
batch_logs = []
try:
ensure_models_loaded()
run_functions_in_sequence(contexts, PIPELINE_STEPS)
processed_images = []
for ctx in contexts:
if hasattr(ctx, 'error') and ctx.error:
processed_images.append({
"url": ctx.url,
"status": STATUS_ERROR,
"error": str(ctx.error)
})
elif hasattr(ctx, 'skip_processing') and ctx.skip_processing:
# Check if there's a specific error message
error_msg = "Processing skipped"
if hasattr(ctx, 'processing_error'):
error_msg = str(ctx.processing_error)
processed_images.append({
"url": ctx.url,
"status": STATUS_ERROR,
"error": error_msg
})
elif hasattr(ctx, 'result_image') and ctx.result_image:
processed_images.append({
"url": ctx.url,
"status": STATUS_PROCESSED,
"base64_image": ctx.result_image,
"metadata": ctx.metadata,
"processing_logs": ctx.processing_logs
})
else:
processed_images.append({
"url": ctx.url,
"status": STATUS_NOT_PROCESSED
})
total_time = time.time() - start_time
return {
"status": "success",
"processed_images": processed_images,
"total_time": total_time,
"batch_logs": batch_logs,
"system_info": get_system_info()
}
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Processing failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@spaces.GPU(duration=GPU_DURATION_LONG)
def process_images_gpu(urls: Union[str, List[str]], product_type: str) -> Dict:
"""GPU-accelerated image processing for Spaces"""
gpu_start_time = time.time()
try:
# Force model loading in GPU context for Zero GPU environment
if not MODELS_LOADED:
logging.info(f"{EMOJI_MAP['INFO']} Loading models in GPU context...")
from src.models.model_loader import load_models
try:
load_models()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded in GPU context")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models in GPU context: {str(e)}")
# Continue anyway - some steps might work without all models
# Move models to GPU within the GPU context
logging.info(f"{EMOJI_MAP['INFO']} Moving models to GPU...")
from src.models.model_loader import move_models_to_gpu
try:
move_models_to_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models moved to GPU")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Failed to move some models to GPU: {str(e)}")
# Continue anyway - will run on CPU but slower
result = _process_images_impl(urls, product_type)
# Track successful GPU usage
gpu_duration = time.time() - gpu_start_time
if hasattr(app, "state") and hasattr(app.state, "quota_tracker"):
app.state.quota_tracker["total_gpu_seconds_used"] += gpu_duration
app.state.quota_tracker["requests"].append({
"timestamp": gpu_start_time,
"duration": gpu_duration,
"success": True
})
# Keep only last 100 requests
app.state.quota_tracker["requests"] = app.state.quota_tracker["requests"][-100:]
# Calculate current quota status
recovery_info = calculate_quota_recovery(app.state.quota_tracker, time.time())
available_quota = recovery_info.get("estimated_available_quota", 0)
logging.info(f"{EMOJI_MAP['INFO']} GPU processing completed in {gpu_duration:.2f}s")
logging.info(f"{EMOJI_MAP['INFO']} Estimated remaining quota: {available_quota:.1f}s (after using {gpu_duration:.1f}s)")
# Store GPU usage in result for rate limiting update
result["_gpu_seconds_used"] = gpu_duration
return result
except Exception as e:
error_msg = str(e)
# Track failed GPU usage
gpu_duration = time.time() - gpu_start_time
if hasattr(app, "state") and hasattr(app.state, "quota_tracker"):
app.state.quota_tracker["requests"].append({
"timestamp": gpu_start_time,
"duration": gpu_duration,
"success": False,
"error": error_msg[:100] # Store first 100 chars of error
})
# Keep only last 100 requests
app.state.quota_tracker["requests"] = app.state.quota_tracker["requests"][-100:]
if "GPU task aborted" in error_msg:
logging.error(f"{EMOJI_MAP['ERROR']} GPU task was aborted - Zero GPU might be overloaded or warming up")
logging.info(f"{EMOJI_MAP['INFO']} This often happens during startup - the GPU will be ready soon")
raise HTTPException(
status_code=503,
detail="GPU resources temporarily unavailable. Zero GPU is warming up. Please try again in 30-60 seconds."
)
else:
raise
def process_images_with_rate_limiting(urls: Union[str, List[str]], product_type: str, client_ip: str, request_id: str = None) -> Dict:
"""Process images with rate limiting and quota management"""
# Convert URLs to list for counting
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
num_images = len(url_list)
# Check rate limiting first
rate_check = check_rate_limiting(client_ip, request_id)
if not rate_check.get("allowed", True):
wait_time = rate_check.get("wait_time_seconds", 30)
message = rate_check.get("message", "Rate limited")
# Format response for client compatibility
error_detail = {
"error": message,
"retry_after": wait_time,
"quota_exceeded": rate_check.get("quota_exceeded", False),
"cooldown_until": rate_check.get("cooldown_until", "")
}
# Use JSON string format that client expects
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail) # Client expects nested JSON
},
headers={"Retry-After": str(wait_time)}
)
# Get current available quota for this IP
available_quota = rate_check.get("available_quota", 300)
# First validate image count against available quota
validation = validate_image_count_for_quota(available_quota, num_images, product_type)
if not validation.get("valid", True):
# Image count validation failed - trigger immediate quota recovery
recovery_wait = 9000 # 2.5 hours
logging.warning(f"{EMOJI_MAP['WARNING']} Image count validation failed for IP {client_ip}: {validation['message']}")
# Update rate limiting to enter long recovery mode
update_rate_limiting(client_ip, request_id, quota_error=True, retry_after_override=recovery_wait)
# Format image count validation response
error_detail = {
"error": "Image count exceeds quota threshold - 2.5 hour recovery wait initiated",
"retry_after": recovery_wait,
"quota_conservation": True,
"image_count_exceeded": True,
"image_count": validation["image_count"],
"available_quota": validation["available_quota"],
"estimated_needed": validation["estimated_needed"],
"threshold_percent": validation["threshold_percent"],
"max_safe_images": validation["max_safe_images"],
"recovery_hours": recovery_wait / 3600,
"message": validation["message"]
}
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail)
},
headers={"Retry-After": str(recovery_wait)}
)
# Check if we should trigger quota recovery (secondary check)
quota_decision = should_trigger_quota_recovery(available_quota, num_images, product_type)
if quota_decision.get("should_wait", False):
# Trigger 2.5-hour quota recovery wait
recovery_wait = quota_decision["recovery_wait_seconds"]
logging.warning(f"{EMOJI_MAP['WARNING']} Triggering quota recovery for IP {client_ip}: {quota_decision['message']}")
# Update rate limiting to enter long recovery mode
update_rate_limiting(client_ip, request_id, quota_error=True, retry_after_override=recovery_wait)
# Format quota conservation response
error_detail = {
"error": "Quota conservation triggered - 2.5 hour recovery wait initiated",
"retry_after": recovery_wait,
"quota_conservation": True,
"available_quota": available_quota,
"estimated_needed": quota_decision["estimated_needed"],
"quota_threshold": quota_decision["quota_threshold"],
"recovery_hours": quota_decision["recovery_wait_hours"],
"message": quota_decision["message"]
}
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail)
},
headers={"Retry-After": str(recovery_wait)}
)
# Update rate limiting tracking
update_rate_limiting(client_ip, request_id)
if os.getenv("SPACE_ID"):
try:
result = process_images_gpu(urls, product_type)
# Update rate limiting with GPU usage
gpu_seconds = result.pop("_gpu_seconds_used", 0)
if gpu_seconds > 0:
update_rate_limiting(client_ip, request_id, gpu_seconds_used=gpu_seconds)
# Reset consecutive quota errors on successful processing
if hasattr(app.state, "quota_tracker"):
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
requests_by_ip = rate_limits.get("requests_by_ip", {})
if client_ip in requests_by_ip:
requests_by_ip[client_ip]["consecutive_quota_errors"] = 0
logging.info(f"{EMOJI_MAP['SUCCESS']} Successful GPU processing - quota error counter reset for IP {client_ip}")
return result
except Exception as e:
error_msg = str(e)
error_type = type(e).__name__
# Handle Gradio quota errors that occur before function execution
if isinstance(e, gradio.exceptions.Error) or "gradio.exceptions.Error" in str(type(e)) or error_type == "Error":
if "GPU limit" in error_msg or "quota exceeded" in error_msg or "ZeroGPU quota exceeded" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: {error_msg}")
# Infrastructure-level quota exhaustion detection
retry_after = 1800 # Default 30 minutes
if hasattr(app.state, "quota_tracker"):
rate_limits = app.state.quota_tracker.get("rate_limiting", {})
# Track global quota exhaustion
current_time = time.time()
last_global_error = rate_limits.get("global_quota_exhausted_at", 0)
time_since_last_global_error = current_time - last_global_error
# If last global error was recent (within 5 minutes), increment global counter
if time_since_last_global_error < 300:
rate_limits["global_consecutive_errors"] += 1
else:
rate_limits["global_consecutive_errors"] = 1
rate_limits["global_quota_exhausted_at"] = current_time
# Mark infrastructure as exhausted
rate_limits["infrastructure_quota_state"] = "exhausted"
rate_limits["infrastructure_quota_reset_time"] = current_time + 5400 # 90 minutes
# Get IP data
requests_by_ip = rate_limits.get("requests_by_ip", {})
if client_ip in requests_by_ip:
ip_data = requests_by_ip[client_ip]
# Count consecutive quota errors
consecutive_errors = ip_data.get("consecutive_quota_errors", 0) + 1
ip_data["consecutive_quota_errors"] = consecutive_errors
# Progressive backoff based on consecutive errors
if consecutive_errors == 1:
retry_after = 1800 # 30 minutes
logging.info(f"{EMOJI_MAP['INFO']} First quota error - standard recovery time")
elif consecutive_errors == 2:
retry_after = 3600 # 60 minutes
logging.warning(f"{EMOJI_MAP['WARNING']} Second consecutive quota error - extended recovery time")
elif consecutive_errors == 3:
retry_after = 5400 # 90 minutes
logging.error(f"{EMOJI_MAP['ERROR']} Third consecutive quota error - maximum recovery time")
else:
# After 3+ consecutive errors, suggest full recovery wait
retry_after = 9000 # 2.5 hours for full recovery
logging.error(f"{EMOJI_MAP['ERROR']} Multiple consecutive quota errors ({consecutive_errors}) - suggesting full recovery wait")
logging.info(f"{EMOJI_MAP['INFO']} Infrastructure quota appears exhausted. Recommend waiting 2.5 hours for full recovery.")
else:
# First time for this IP
requests_by_ip[client_ip] = {"consecutive_quota_errors": 1}
# Update rate limiting to enter cooldown mode with calculated retry_after
update_rate_limiting(client_ip, request_id, quota_error=True, retry_after_override=retry_after)
# Store quota error info
if hasattr(app, "state"):
if not hasattr(app.state, "last_quota_error"):
app.state.last_quota_error = {}
app.state.last_quota_error = {
"timestamp": time.time(),
"retry_after": retry_after,
"error_message": error_msg
}
# Format response for client compatibility
cooldown_until = datetime.fromtimestamp(time.time() + retry_after).isoformat()
error_detail = {
"error": f"GPU quota exceeded. Recovery needed: {retry_after // 60} minutes",
"retry_after": retry_after,
"quota_exceeded": True,
"cooldown_until": cooldown_until
}
# Raise HTTPException with nested JSON format client expects
raise HTTPException(
status_code=429,
detail={
"error": json.dumps(error_detail) # Client expects nested JSON
},
headers={"Retry-After": str(retry_after)}
)
# Re-raise other exceptions
raise
else:
return _process_images_impl(urls, product_type)
def process_images(urls: Union[str, List[str]], product_type: str) -> Dict:
"""Backward compatibility wrapper - should not be used directly"""
# This is kept for backward compatibility but should not be used
# All endpoints should use process_images_with_rate_limiting instead
return _process_images_impl(urls, product_type)
# ----------------------------------------------------------------------
# ENDPOINTS
# ----------------------------------------------------------------------
@app.get("/", response_class=HTMLResponse)
async def root():
return f"""
<html>
<head>
<title>{API_TITLE}</title>
</head>
<body>
<h1>{API_TITLE} v{API_VERSION}</h1>
<p>Visit <a href="/api/docs">/api/docs</a> for API documentation</p>
</body>
</html>
"""
@app.get("/health", response_model=HealthResponse)
async def health():
# Check GPU availability
gpu_available = False
gpu_name = None
try:
if torch.cuda.is_available():
gpu_available = True
gpu_name = torch.cuda.get_device_name(0)
except:
pass
system_info = get_system_info()
system_info["gpu_available"] = gpu_available
system_info["gpu_name"] = gpu_name
system_info["space_id"] = os.getenv("SPACE_ID", None)
system_info["zero_gpu"] = bool(os.getenv("SPACE_ID"))
return HealthResponse(
status="healthy",
timestamp=time.time(),
device=DEVICE,
models_loaded=MODELS_LOADED,
gpu_available=gpu_available,
system_info=system_info
)
@app.post("/api/wake")
async def wake_up():
"""Lightweight endpoint for waking up the space"""
logging.info(f"{EMOJI_MAP['INFO']} Wake-up request received")
# Try to initialize GPU if in Zero GPU environment
if os.getenv("SPACE_ID"):
try:
# This will trigger GPU allocation in Zero GPU spaces
init_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialized for wake-up")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization during wake-up: {str(e)}")
# Ensure models are loaded
try:
ensure_models_loaded()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded during wake-up")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Model loading during wake-up: {str(e)}")
return {
"status": "awake",
"timestamp": time.time(),
"device": DEVICE,
"models_loaded": MODELS_LOADED,
"message": "Service is awake and ready"
}
@app.get("/api/quota-info")
async def quota_info():
"""Provide information about GPU quota and current recovery status"""
current_time = time.time()
# Base quota information
quota_status = {
"status": "info",
"quota_management": "Hugging Face ZeroGPU Infrastructure",
"quota_details": {
"total_seconds": 300,
"refill_rate": "1 GPU second per 30 real seconds",
"half_life": "2 hours",
"full_recovery_time": "2.5 hours (9000 seconds)"
},
"recovery_suggestions": {
"light_usage": {
"gpu_seconds": 30,
"wait_minutes": 15,
"suitable_for": "1-2 images"
},
"moderate_usage": {
"gpu_seconds": 60,
"wait_minutes": 30,
"suitable_for": "2-4 images"
},
"heavy_usage": {
"gpu_seconds": 120,
"wait_minutes": 60,
"suitable_for": "4-8 images"
},
"full_quota": {
"gpu_seconds": 300,
"wait_minutes": 150,
"suitable_for": "10+ images"
}
},
"user_type_quotas": {
"anonymous": {
"quota_seconds": 180,
"description": "Not logged in"
},
"authenticated": {
"quota_seconds": 300,
"description": "Logged in users"
},
"pro": {
"quota_seconds": 1500,
"description": "PRO subscribers (5x quota)"
}
},
"timestamp": current_time
}
# Add current quota recovery calculation if available
if hasattr(app.state, "quota_tracker"):
recovery_info = calculate_quota_recovery(app.state.quota_tracker, current_time)
quota_status["current_quota_estimate"] = recovery_info
# Update last recovery check time
app.state.quota_tracker["quota_recovery"]["last_recovery_check"] = current_time
# Add information about last known quota error if available
if hasattr(app.state, "last_quota_error"):
last_error = app.state.last_quota_error
time_since_error = current_time - last_error.get("timestamp", 0)
quota_status["last_quota_error"] = {
"time_ago_seconds": int(time_since_error),
"retry_after": last_error.get("retry_after", 900),
"estimated_recovery": max(0, last_error.get("retry_after", 900) - time_since_error)
}
# Add usage tracking information if available
if hasattr(app.state, "quota_tracker"):
tracker = app.state.quota_tracker
recent_requests = tracker.get("requests", [])
# Calculate stats from recent requests
if recent_requests:
last_hour_requests = [r for r in recent_requests if current_time - r["timestamp"] < 3600]
successful_requests = [r for r in last_hour_requests if r.get("success", False)]
failed_requests = [r for r in last_hour_requests if not r.get("success", False)]
quota_status["usage_stats"] = {
"last_hour": {
"total_requests": len(last_hour_requests),
"successful": len(successful_requests),
"failed": len(failed_requests),
"total_gpu_seconds": sum(r.get("duration", 0) for r in successful_requests),
"average_duration": sum(r.get("duration", 0) for r in successful_requests) / len(successful_requests) if successful_requests else 0
},
"total_gpu_seconds_used": tracker.get("total_gpu_seconds_used", 0)
}
# Add last few errors for debugging
recent_errors = [r for r in failed_requests if "quota" in r.get("error", "").lower()][-3:]
if recent_errors:
quota_status["recent_quota_errors"] = recent_errors
return quota_status
@app.post("/api/quota-check")
async def quota_check(request: ImageRequest):
"""Check if current quota is sufficient for the request"""
try:
availability = check_quota_availability(request.urls, request.product_type)
return {
"status": "success",
"quota_check": availability,
"timestamp": time.time()
}
except Exception as e:
return JSONResponse(
status_code=400,
content={
"status": "error",
"error": str(e),
"timestamp": time.time()
}
)
@app.post("/api/predict", response_model=ProcessingResponse)
async def predict(request: ImageRequest, http_request: Request):
# Log X-IP-Token if present (for quota tracking)
x_ip_token = http_request.headers.get("x-ip-token")
if x_ip_token:
logging.info(f"{EMOJI_MAP['INFO']} Request received with X-IP-Token for quota tracking")
# Get client IP and generate request ID
client_ip = get_client_ip(http_request)
request_id = generate_request_id(request.urls, request.product_type)
# Log rate limiting info
logging.info(f"{EMOJI_MAP['INFO']} Processing request from {client_ip}, request_id: {request_id}")
result = process_images_with_rate_limiting(request.urls, request.product_type, client_ip, request_id)
return ProcessingResponse(
status=result["status"],
results=[
ProcessedImage(
image_url=img["url"],
status=img["status"],
base64=img.get("base64_image", ""),
format="png",
type="processed",
metadata=img.get("metadata", {}),
error=img.get("error")
)
for img in result["processed_images"]
],
processed_count=len([img for img in result["processed_images"] if img["status"] == STATUS_PROCESSED]),
total_time=result["total_time"],
system_info=result["system_info"]
)
@app.post("/api/rb_and_crop")
async def shopify_webhook(webhook: ShopifyWebhook, request: Request):
# Get client IP first for quota checking
client_ip = get_client_ip(request)
if not webhook.data or len(webhook.data) < 2:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid webhook data")
images_info = webhook.data[0]
product_type = webhook.data[1] if len(webhook.data) > 1 else "General"
if not isinstance(images_info, list):
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid images data")
urls = []
for img_dict in images_info:
if isinstance(img_dict, dict) and "url" in img_dict:
urls.append(img_dict["url"])
if not urls:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS)
# ABSOLUTE QUOTA GATE - CHECK BEFORE ANY PROCESSING
num_images = len(urls)
rate_check = check_rate_limiting(client_ip)
if not rate_check.get("allowed", True):
wait_time = rate_check.get("wait_time_seconds", 9000)
message = rate_check.get("message", "Quota exceeded")
error_detail = {
"error": message,
"retry_after": wait_time,
"quota_exceeded": True,
"recovery_hours": wait_time / 3600
}
raise HTTPException(
status_code=429,
detail={"error": json.dumps(error_detail)},
headers={"Retry-After": str(wait_time)}
)
# SMART QUOTA VALIDATION
available_quota = rate_check.get("available_quota", 0)
validation = validate_image_count_for_quota(available_quota, num_images, product_type)
if not validation.get("valid", False):
# Calculate appropriate wait time based on quota needed
estimated_needed = validation.get("estimated_needed", 0)
if estimated_needed <= 60:
recovery_wait = 1800 # 30 minutes for small batches
elif estimated_needed <= 120:
recovery_wait = 3600 # 1 hour for medium batches
else:
recovery_wait = 7200 # 2 hours for large batches
logging.warning(f"{EMOJI_MAP['WARNING']} Smart quota gate: {num_images} images need {estimated_needed:.1f}s, available: {available_quota:.1f}s")
update_rate_limiting(client_ip, quota_error=True, retry_after_override=recovery_wait)
error_detail = {
"error": "Smart quota management: insufficient quota for safe processing",
"retry_after": recovery_wait,
"quota_exceeded": True,
"image_count_exceeded": True,
"recovery_hours": recovery_wait / 3600,
"image_count": num_images,
"available_quota": available_quota,
"estimated_needed": estimated_needed,
"max_safe_images": validation.get("max_safe_images", 0),
"efficiency": validation.get("efficiency", "N/A"),
"message": validation.get("message", "Quota insufficient")
}
raise HTTPException(
status_code=429,
detail={"error": json.dumps(error_detail)},
headers={"Retry-After": str(recovery_wait)}
)
# Generate request ID after validation passes
request_id = generate_request_id(urls, product_type)
# Log X-IP-Token if present (for quota tracking)
x_ip_token = request.headers.get("x-ip-token")
if x_ip_token:
logging.info(f"{EMOJI_MAP['INFO']} Request received with X-IP-Token for quota tracking")
# Log rate limiting info
logging.info(f"{EMOJI_MAP['INFO']} Shopify webhook from {client_ip}, request_id: {request_id}")
# Special handling for wake-up requests (single placeholder image with "Test" product type)
if len(urls) == 1 and product_type == "Test" and "placeholder.com" in urls[0]:
logging.info(f"{EMOJI_MAP['INFO']} Wake-up request detected, returning minimal response")
return {
"status": STATUS_SUCCESS,
"processed_images": [{
"url": urls[0],
"status": STATUS_PROCESSED,
"base64_image": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChwGA60e6kgAAAABJRU5ErkJggg==", # 1x1 transparent PNG
"color": "#ffffff",
"image_type": "wake_up",
"artifacts": "false"
}]
}
result = process_images_with_rate_limiting(urls, product_type, client_ip, request_id)
return {
"status": result["status"],
"processed_images": [
{
"url": img["url"],
"status": img["status"],
"base64_image": img.get("base64_image", ""),
"hex_color": img.get("metadata", {}).get("hex_color"),
"image_type": img.get("metadata", {}).get("final_image_type"),
"artifacts": img.get("metadata", {}).get("artifacts")
}
for img in result["processed_images"]
]
}
@app.post("/api/batch")
async def batch_process(requests: List[ImageRequest], http_request: Request):
# Get client IP
client_ip = get_client_ip(http_request)
# Log batch request
logging.info(f"{EMOJI_MAP['INFO']} Batch request from {client_ip} with {len(requests)} items")
results = []
for i, req in enumerate(requests):
try:
# Generate unique request ID for each item in batch
request_id = f"batch_{generate_request_id(req.urls, req.product_type)}_{i}"
result = process_images_with_rate_limiting(req.urls, req.product_type, client_ip, request_id)
results.append(result)
except HTTPException as e:
# Handle rate limiting errors in batch
if e.status_code == 429:
results.append({
"status": "rate_limited",
"error": e.detail,
"urls": req.urls,
"retry_after": e.headers.get("Retry-After", "30")
})
# Stop processing remaining items if rate limited
logging.warning(f"{EMOJI_MAP['WARNING']} Batch processing stopped due to rate limiting")
break
else:
results.append({
"status": "error",
"error": str(e.detail),
"urls": req.urls
})
except Exception as e:
results.append({
"status": "error",
"error": str(e),
"urls": req.urls
})
return {
"status": "success",
"batch_results": results,
"total_requests": len(requests),
"processed_requests": len(results)
}
# ----------------------------------------------------------------------
# ERROR HANDLERS
# ----------------------------------------------------------------------
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
return JSONResponse(
status_code=exc.status_code,
content={
"status": "error",
"error": exc.detail,
"timestamp": time.time()
}
)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
# If it's already an HTTPException with 429, let it through
if isinstance(exc, HTTPException) and exc.status_code == 429:
return JSONResponse(
status_code=429,
content=exc.detail if isinstance(exc.detail, dict) else {"error": exc.detail},
headers=exc.headers if hasattr(exc, 'headers') else {"Retry-After": "900"}
)
# Determine error type and prepare detailed response
error_type = "UNKNOWN_ERROR"
error_message = str(exc)
error_details = {}
status_code = 500
# Check for specific error types
if (isinstance(exc, gradio.exceptions.Error) and ("GPU limit" in error_message or "quota exceeded" in error_message)) or \
("GPU" in error_message and ("limit" in error_message or "quota" in error_message)) or \
"ZeroGPU quota exceeded" in error_message:
# For GPU quota errors, log a simple notification without traceback
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit")
error_type = "GPU_LIMIT_ERROR"
error_details["gpu_error"] = True
# Calculate retry-after time from error message
retry_after = calculate_retry_after_from_quota(error_message)
error_details["retry_after"] = retry_after
# Parse any specific retry time mentioned in the error
parsed_retry = parse_retry_time_from_error(error_message)
if parsed_retry:
error_details["retry_after"] = parsed_retry
logging.info(f"{EMOJI_MAP['INFO']} Parsed retry time from error: {parsed_retry}s")
# Provide quota recovery information
error_details["quota_info"] = {
"message": "GPU quota exceeded. ZeroGPU quota refills at 1 GPU second per 30 real seconds.",
"recommended_wait_times": {
"minimal": 900, # 15 minutes for ~30s GPU quota
"moderate": 1800, # 30 minutes for ~60s GPU quota
"full": 5400 # 90 minutes for ~180s GPU quota
},
"note": "Quota is managed by Hugging Face infrastructure, not this application.",
"calculated_retry": error_details["retry_after"]
}
# Use 429 status code for rate limiting
status_code = 429
elif "GPU task aborted" in error_message:
logging.error(f"{EMOJI_MAP['ERROR']} GPU task aborted")
error_type = "GPU_TASK_ABORTED"
error_details["gpu_error"] = True
elif "gradio.exceptions.Error" in str(type(exc)):
error_type = "GRADIO_ERROR"
error_details["gradio_error"] = True
# For Gradio errors related to GPU limits, don't log traceback
if "GPU limit" in error_message or "GPU quota" in error_message:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit")
error_type = "GPU_LIMIT_ERROR"
error_details["gpu_error"] = True
# Calculate retry-after time from error message
retry_after = calculate_retry_after_from_quota(error_message)
error_details["retry_after"] = retry_after
# Parse any specific retry time mentioned in the error
parsed_retry = parse_retry_time_from_error(error_message)
if parsed_retry:
error_details["retry_after"] = parsed_retry
logging.info(f"{EMOJI_MAP['INFO']} Parsed retry time from Gradio error: {parsed_retry}s")
# Use 429 status code for rate limiting
status_code = 429
else:
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
elif isinstance(exc, ValueError):
error_type = "VALIDATION_ERROR"
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
elif isinstance(exc, TimeoutError):
error_type = "TIMEOUT_ERROR"
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
else:
# For other errors, log with traceback
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
# Prepare response with detailed error information
error_response = {
"status": "error",
"error_type": error_type,
"error_message": error_message,
"error_details": error_details,
"timestamp": time.time(),
"request_path": str(request.url.path),
"request_method": request.method
}
# Only include traceback for non-GPU quota errors
if error_type not in ["GPU_LIMIT_ERROR", "GPU_TASK_ABORTED"] and not ("GPU limit" in error_message) and not ("ZeroGPU quota exceeded" in error_message):
tb_lines = traceback.format_exception(type(exc), exc, exc.__traceback__)
error_response["traceback"] = ''.join(tb_lines)
# For GPU quota errors, log a simple summary instead of full response
if error_type == "GPU_LIMIT_ERROR":
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota limit response sent to client with retry_after: {error_details.get('retry_after', 900)}s")
# Store last quota error information for monitoring
if not hasattr(app.state, "last_quota_error"):
app.state.last_quota_error = {}
app.state.last_quota_error = {
"timestamp": time.time(),
"retry_after": error_details.get("retry_after", 900),
"error_message": error_message
}
else:
# Log the full error details for other errors
logging.error(f"{EMOJI_MAP['ERROR']} Error response: {json.dumps(error_response, indent=2)}")
# Prepare response headers
headers = {}
if error_type == "GPU_LIMIT_ERROR" and "retry_after" in error_details:
headers["Retry-After"] = str(error_details["retry_after"])
return JSONResponse(
status_code=status_code,
content=error_response,
headers=headers
)
# ----------------------------------------------------------------------
# MAIN
# ----------------------------------------------------------------------
if __name__ == "__main__":
# Configure uvicorn logging to avoid duplicates
log_config = uvicorn.config.LOGGING_CONFIG
log_config["formatters"]["default"]["fmt"] = "%(asctime)s [%(levelname)s] %(name)s: %(message)s"
log_config["formatters"]["access"]["fmt"] = '%(asctime)s [%(levelname)s] %(name)s: %(client_addr)s - "%(request_line)s" %(status_code)s'
# Disable duplicate logging from uvicorn
log_config["loggers"]["uvicorn"]["propagate"] = False
log_config["loggers"]["uvicorn.access"]["propagate"] = False
uvicorn.run(
app,
host=API_HOST,
port=API_PORT,
log_level="info",
log_config=log_config
)