U /f2@sddlZddlZddlmZddlmZddlZddlZddl m Z ddl m m Zededdddd d d gZd ifd dZd1ddZd2ddZd3ddZd4ddZd5ddZd6d!d"Zd7d$d%Zd8d'd(Zd9d*d+Zd:d-d.Zd;d/d0ZdS)<N)BytesIO) pad_sequence soundfileflacmp3m4aoggopuswavwmatrainc cs|D]}d|kst|d}zt|}tt|D]v}|dkrX|j|df|krXq8|t|j||dkr~|Vq8t ||j|dfD]\}}|||dVqq8Wqt k r} zt d || W5d} ~ XYqXqdS)z Give url or local file, return file descriptor Inplace operation. Args: data(Iterable[str]): url or local file list Returns: Iterable[{src, stream}] src inferenceuttr ) tts_indextts_textzFailed to open {}, ex info {}N)AssertionErrorpq read_table to_pandasrangelenlocupdatedict enumerate Exceptionloggingwarningformat) datamodeZtts_datasampleurldfiindextextexr)L/proj/MR_dataset/benson/CosyVoice-main-aug-19/cosyvoice/dataset/processor.pyparquet_openers   r+( Mb@?c cs|D]}tt|d\|d<|d<|d=|dd|dd} | |krPq| |krZqt|d|krlqt|d|kr~qt|ddkrq| dkrt|d| |krqt|d| |krq|Vqd S) aX Filter sample according to feature and label length Inplace operation. Args:: data: Iterable[{key, wav, label, sample_rate}] max_length: drop utterance which is greater than max_length(10ms) min_length: drop utterance which is less than min_length(10ms) token_max_length: drop utterance which is greater than token_max_length, especially when use char unit for english modeling token_min_length: drop utterance which is less than token_max_length min_output_input_ratio: minimal ration of token_length / feats_length(10ms) max_output_input_ratio: maximum ration of token_length / feats_length(10ms) Returns: Iterable[{key, wav, label, sample_rate}] audio_dataspeech sample_rater/d text_token speech_tokenrN) torchaudioloadrsizer) r max_length min_lengthZtoken_max_lengthZtoken_min_lengthZmin_output_input_ratioZmax_output_input_ratior!r" num_framesr)r)r*filter9s(r="V>ccs|D]}d|kstd|ks t|d}|d}||krb||krBq||d<tjj||d||d<|d}|dkr|d|<|VqdS)z Resample data. Inplace operation. Args: data: Iterable[{key, wav, label, sample_rate}] resample_rate: target resample rate Returns: Iterable[{key, wav, label, sample_rate}] r3r2) orig_freqnew_freqr/N)rr7 transformsResampleabsmax)r Z resample_rateZmin_sample_rater!r"r3waveformmax_valr)r)r*resamplels&   rHccsr|D]h}d|kstd|ks td|ks,td|ks8t|d}||jdddd}||d<|d=|Vqd S) z Extract fbank Args: data: Iterable[{key, wav, label, sample_rate}] Returns: Iterable[{key, feat, label}] r3r2rr5rdimr/ speech_featN)rsqueeze transpose)r feat_extractorr!r"rFmatr)r)r* compute_fbanks     rPccst|D]j}tj|dtjd|d<tj|dtjd|d<|rhtj|ddd|d<tj|ddd|d<|VqdS)z Parse utt_embedding/spk_embedding Args: data: Iterable[{key, wav, label, sample_rate}] Returns: Iterable[{key, feat, label}] utt_embeddingdtype spk_embeddingrrIN)torchtensorfloat32F normalize)r rYr!r"r)r)r*parse_embeddings rZccsZ|}|D]J}d|kst|j|d|d|d<|dkrN|j|d|d|d<|Vq dS)z Decode text to chars or BPE Inplace operation Args: data: Iterable[{key, wav, txt, sample_rate}] Returns: Iterable[{key, wav, txt, tokens, label, sample_rate}] r')allowed_specialr5rrtts_text_tokenN)rencode)r get_tokenizerr[r! tokenizerr"r)r)r*tokenizes  r`'ccs`g}|D]8}||t||krt||D] }|Vq0g}qt||D] }|VqPdS)z Local shuffle the data Args: data: Iterable[{key, feat, label}] shuffle_size: buffer size for shuffle Returns: Iterable[{key, feat, label}] N)appendrrandomshuffle)r Z shuffle_sizer!bufr"xr)r)r*rds     rdccslg}|D]>}||t||kr|jddd|D] }|Vq6g}q|jddd|D] }|Vq\dS)a{ Sort the data by feature length. Sort is used after shuffle and before batch, so we can group utts with similar lengths into a batch, and `sort_size` should be less than `shuffle_size` Args: data: Iterable[{key, feat, label}] sort_size: buffer size for sort Returns: Iterable[{key, feat, label}] cSs|ddSNrKrr9rfr)r)r*zsort..)keycSs|ddSrhrirjr)r)r*rkrlN)rbrsort)r sort_sizer!rer"rfr)r)r*rns  rnccsDg}|D]$}||t||kr|Vg}qt|dkr@|VdS)z Static batch the data by `batch_size` Args: data: Iterable[{key, feat, label}] batch_size: batch size Returns: Iterable[List[{key, feat, label}]] rN)rbr)r batch_sizerer"r)r)r* static_batchs    rr.ccsg}d}|D]p}d|kstt|dtjs0t|dd}t||}|t|d}||krr|V|g}|}q ||q t|dkr|VdS)a Dynamic batch the data until the total frames in batch reach `max_frames_in_batch` Args: data: Iterable[{key, feat, label}] max_frames_in_batch: max_frames in one batch Returns: Iterable[List[{key, feat, label}]] rrKr/N)r isinstancerUTensorr9rErrb)r max_frames_in_batchr!reZlongest_framesr"Znew_sample_framesZframes_after_paddingr)r)r* dynamic_batch s     rwstaticcCsJ|dkrt|dS|dkr$t||S|dkr6t||Std|dS)z& Wrapper for static/dynamic batch rr/rxdynamiczUnsupported batch type {}N)rrrwrfatalr)r Z batch_typerqrvr!r)r)r*batch)s   r{c #s|D]ttsttjddDtjd}tj|dd}fdd|D}fdd|D}tjdd|Dtjd}t|dd d }fd d|D}tjd d|Dtjd}t|dd d }fd d|D} fdd|D} tjdd| Dtjd} t| dd d } tjfdd|Dd d} tjfdd|Dd d} |||||| | | | | d }|dkrfdd|D}fdd|D}fdd|D}tjdd|Dtjd}t|ddd }| ||||d|dkr|d|d<n |d|d<|VqdS)z Padding the data into training data Args: data: Iterable[List[{key, feat, label}]] Returns: Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)] cSsg|]}|ddqS)rKr/ri).0rfr)r)r* Bszpadding..rRT) descendingcsg|]}|dqS)rr)r|r%r"r)r*r}Fscsg|]}t|dqS)r6rUrVrrr)r*r}GscSsg|]}|dqSrrirr)r)r*r}Hsr) batch_first padding_valuecsg|]}|dqS)rKr)rrr)r*r}LscSsg|]}|dqSrrirr)r)r*r}Mscsg|]}|dqS)r'r)rrr)r*r}Qscsg|]}t|dqS)r5rrrr)r*r}RscSsg|]}|dqSrrirr)r)r*r}Sscsg|]}|dqS)rQr)rrr)r*r}UsrIcsg|]}|dqS)rTr)rrr)r*r}Vs) uttsr6speech_token_lenrKspeech_feat_lenr'r5text_token_lenrQrTrcsg|]}|dqS)rr)rrr)r*r}dscsg|]}|dqS)rr)rrr)r*r}escsg|]}t|dqS)r\rrrr)r*r}fscSsg|]}|dqSrrirr)r)r*r}gs)rrr\tts_text_token_lenrT embeddingrQN) rtlistrrUrVint32argsortrstackr)r Zuse_spk_embeddingr!rorderrr6rrKr'r5rrQrTr{rrr\rr)rr*padding7sf    r)r,r-r.r/r0r/r )r>r?r )r )r )r )rar )rgr )rp)rsr )rxrprsr )r )rrcpyarrow.parquetparquetriorrUr7Ztorch.nn.utils.rnnrZtorch.nn.functionalnn functionalrXset_audio_backendsetZAUDIO_FORMAT_SETSr+r=rHrPrZr`rdrnrrrwr{rr)r)r)r*s:     3