Upload 9 files
Browse files- app.py +148 -0
- main4.ipynb +1188 -0
- ner_model/config.json +50 -0
- ner_model/model.safetensors +3 -0
- ner_model/special_tokens_map.json +7 -0
- ner_model/tokenizer.json +0 -0
- ner_model/tokenizer_config.json +58 -0
- ner_model/vocab.txt +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import subprocess
|
4 |
+
import numpy as np
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, DataCollatorForTokenClassification
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
print(f"Menggunakan perangkat: {device}")
|
13 |
+
|
14 |
+
# Load dataset to get label list
|
15 |
+
try:
|
16 |
+
dataset = load_dataset("indonlp/indonlu", "nergrit", trust_remote_code=True)
|
17 |
+
except Exception as e:
|
18 |
+
print(f"Gagal memuat dataset: {e}")
|
19 |
+
sys.exit(1)
|
20 |
+
|
21 |
+
# Verify dataset structure
|
22 |
+
if "train" not in dataset or "test" not in dataset:
|
23 |
+
print("Dataset tidak memiliki split train/test yang diharapkan.")
|
24 |
+
sys.exit(1)
|
25 |
+
if "tokens" not in dataset["train"].column_names or "ner_tags" not in dataset["train"].column_names:
|
26 |
+
print("Dataset tidak memiliki kolom 'tokens' atau 'ner_tags'.")
|
27 |
+
sys.exit(1)
|
28 |
+
|
29 |
+
# Define label list
|
30 |
+
try:
|
31 |
+
label_list = dataset["train"].features["ner_tags"].feature.names
|
32 |
+
id2label = {i: label for i, label in enumerate(label_list)}
|
33 |
+
label2id = {label: i for i, label in enumerate(label_list)}
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Gagal mendapatkan label: {e}")
|
36 |
+
sys.exit(1)
|
37 |
+
|
38 |
+
# Load tokenizer and model from saved directory
|
39 |
+
try:
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("./ner_model")
|
41 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
42 |
+
"./ner_model",
|
43 |
+
num_labels=len(label_list),
|
44 |
+
id2label=id2label,
|
45 |
+
label2id=label2id
|
46 |
+
)
|
47 |
+
model.to(device)
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Gagal memuat model atau tokenizer dari './ner_model': {e}")
|
50 |
+
print("Pastikan folder './ner_model' ada dan berisi model yang telah dilatih.")
|
51 |
+
sys.exit(1)
|
52 |
+
|
53 |
+
# Tokenize and align labels for test data
|
54 |
+
def tokenize_and_align_labels(examples):
|
55 |
+
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
|
56 |
+
labels = []
|
57 |
+
for i, label in enumerate(examples["ner_tags"]):
|
58 |
+
word_ids = tokenized_inputs.word_ids(batch_index=i)
|
59 |
+
previous_word_idx = None
|
60 |
+
label_ids = []
|
61 |
+
for word_idx in word_ids:
|
62 |
+
if word_idx is None:
|
63 |
+
label_ids.append(-100)
|
64 |
+
elif word_idx != previous_word_idx:
|
65 |
+
label_ids.append(label[word_idx])
|
66 |
+
else:
|
67 |
+
label_ids.append(-100)
|
68 |
+
previous_word_idx = word_idx
|
69 |
+
labels.append(label_ids)
|
70 |
+
tokenized_inputs["labels"] = labels
|
71 |
+
return tokenized_inputs
|
72 |
+
|
73 |
+
# Tokenize test dataset
|
74 |
+
try:
|
75 |
+
tokenized_dataset = dataset.map(tokenize_and_align_labels, batched=True)
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Gagal menokenisasi dataset: {e}")
|
78 |
+
sys.exit(1)
|
79 |
+
|
80 |
+
# Function to predict entities for input text
|
81 |
+
def predict_entities(input_text):
|
82 |
+
if not input_text.strip():
|
83 |
+
return "Masukkan teks untuk diprediksi."
|
84 |
+
|
85 |
+
# Tokenize input text
|
86 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
87 |
+
input_ids = inputs["input_ids"].to(device)
|
88 |
+
attention_mask = inputs["attention_mask"].to(device)
|
89 |
+
|
90 |
+
# Predict
|
91 |
+
model.eval()
|
92 |
+
with torch.no_grad():
|
93 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
94 |
+
predictions = outputs.logits.argmax(dim=2)[0].cpu().numpy()
|
95 |
+
|
96 |
+
# Get tokens and predicted labels
|
97 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
98 |
+
labels = [id2label[pred] for pred in predictions]
|
99 |
+
|
100 |
+
# Remove special tokens ([CLS], [SEP]) and align
|
101 |
+
result = []
|
102 |
+
for token, label in zip(tokens, labels):
|
103 |
+
if token not in ["[CLS]", "[SEP]"]:
|
104 |
+
result.append({"Token": token, "Entity": label})
|
105 |
+
|
106 |
+
# Convert to DataFrame for display
|
107 |
+
return pd.DataFrame(result)
|
108 |
+
|
109 |
+
# Gradio interface
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("# Named Entity Recognition (NER) dengan IndoBERT")
|
112 |
+
gr.Markdown("Masukkan teks dalam bahasa Indonesia untuk mendeteksi entitas seperti PERSON, ORGANISATION, PLACE, dll.")
|
113 |
+
|
114 |
+
gr.Markdown("## Keterangan Label Entitas")
|
115 |
+
gr.Markdown("""
|
116 |
+
- **O**: Token bukan entitas (contoh: "dan", "mengunjungi").
|
117 |
+
- **B-PERSON**: Awal nama orang (contoh: "Joko" dalam "Joko Widodo").
|
118 |
+
- **I-PERSON**: Lanjutan nama orang (contoh: "Widodo" atau "##do" dalam "Joko Widodo").
|
119 |
+
- **B-PLACE**: Awal nama tempat (contoh: "Bali").
|
120 |
+
- **I-PLACE**: Lanjutan nama tempat (contoh: "Indonesia" dalam "Bali, Indonesia").
|
121 |
+
""")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
text_input = gr.Textbox(
|
125 |
+
label="Masukkan Teks",
|
126 |
+
placeholder="Contoh: Joko Widodo menghadiri acara di Universitas Indonesia pada tanggal 14 Juni 2025",
|
127 |
+
lines=3
|
128 |
+
)
|
129 |
+
submit_button = gr.Button("Prediksi")
|
130 |
+
clear_button = gr.Button("Bersihkan")
|
131 |
+
|
132 |
+
output_table = gr.Dataframe(label="Hasil Prediksi")
|
133 |
+
|
134 |
+
gr.Markdown("## Contoh Teks")
|
135 |
+
gr.Markdown("- SBY berkunjung ke Bali bersama Jokowi.\n- Universitas Gadjah Mada menyelenggarakan seminar pada 10 Maret 2025.")
|
136 |
+
|
137 |
+
gr.Markdown("## Pertimbangan Keamanan Data, Privasi, dan Etika")
|
138 |
+
gr.Markdown("""
|
139 |
+
- **Keamanan Data**: Dataset bersumber dari berita publik, tidak mengandung informasi sensitif seperti alamat atau nomor identitas.
|
140 |
+
- **Privasi**: Input pengguna tidak disimpan, menjaga privasi.
|
141 |
+
- **Etika AI**: Dataset mencakup berbagai topik berita (politik, olahraga, budaya), mengurangi risiko bias terhadap entitas tertentu.
|
142 |
+
""")
|
143 |
+
|
144 |
+
submit_button.click(fn=predict_entities, inputs=text_input, outputs=output_table)
|
145 |
+
clear_button.click(fn=lambda: "", inputs=None, outputs=text_input)
|
146 |
+
|
147 |
+
# Launch Gradio interface
|
148 |
+
demo.launch()
|
main4.ipynb
ADDED
@@ -0,0 +1,1188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "2a409dd5",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"WARNING:tensorflow:From d:\\Anaconda\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
14 |
+
"\n",
|
15 |
+
"Menggunakan perangkat: cuda\n"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"name": "stderr",
|
20 |
+
"output_type": "stream",
|
21 |
+
"text": [
|
22 |
+
"[I 2025-07-18 06:26:20,055] A new study created in memory with name: no-name-50af0249-7af4-476f-988c-7342adeab58c\n"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"Memulai hyperparameter tuning dengan Optuna...\n"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"name": "stderr",
|
34 |
+
"output_type": "stream",
|
35 |
+
"text": [
|
36 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at indobenchmark/indobert-base-p1 and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
37 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
38 |
+
"C:\\Users\\BUDI\\AppData\\Local\\Temp\\ipykernel_6152\\2584540621.py:147: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
39 |
+
" trainer = Trainer(\n"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"data": {
|
44 |
+
"text/html": [
|
45 |
+
"\n",
|
46 |
+
" <div>\n",
|
47 |
+
" \n",
|
48 |
+
" <progress value='836' max='836' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
49 |
+
" [836/836 03:00, Epoch 4/4]\n",
|
50 |
+
" </div>\n",
|
51 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
52 |
+
" <thead>\n",
|
53 |
+
" <tr style=\"text-align: left;\">\n",
|
54 |
+
" <th>Epoch</th>\n",
|
55 |
+
" <th>Training Loss</th>\n",
|
56 |
+
" <th>Validation Loss</th>\n",
|
57 |
+
" <th>Precision</th>\n",
|
58 |
+
" <th>Recall</th>\n",
|
59 |
+
" <th>F1</th>\n",
|
60 |
+
" <th>Accuracy</th>\n",
|
61 |
+
" <th>Per Entity</th>\n",
|
62 |
+
" </tr>\n",
|
63 |
+
" </thead>\n",
|
64 |
+
" <tbody>\n",
|
65 |
+
" <tr>\n",
|
66 |
+
" <td>1</td>\n",
|
67 |
+
" <td>0.124700</td>\n",
|
68 |
+
" <td>0.166868</td>\n",
|
69 |
+
" <td>0.748068</td>\n",
|
70 |
+
" <td>0.731118</td>\n",
|
71 |
+
" <td>0.739496</td>\n",
|
72 |
+
" <td>0.945582</td>\n",
|
73 |
+
" <td>{}</td>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <td>2</td>\n",
|
77 |
+
" <td>0.103800</td>\n",
|
78 |
+
" <td>0.157893</td>\n",
|
79 |
+
" <td>0.750355</td>\n",
|
80 |
+
" <td>0.799094</td>\n",
|
81 |
+
" <td>0.773958</td>\n",
|
82 |
+
" <td>0.952456</td>\n",
|
83 |
+
" <td>{}</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <td>3</td>\n",
|
87 |
+
" <td>0.096100</td>\n",
|
88 |
+
" <td>0.171932</td>\n",
|
89 |
+
" <td>0.800613</td>\n",
|
90 |
+
" <td>0.788520</td>\n",
|
91 |
+
" <td>0.794521</td>\n",
|
92 |
+
" <td>0.955606</td>\n",
|
93 |
+
" <td>{}</td>\n",
|
94 |
+
" </tr>\n",
|
95 |
+
" <tr>\n",
|
96 |
+
" <td>4</td>\n",
|
97 |
+
" <td>0.032800</td>\n",
|
98 |
+
" <td>0.178615</td>\n",
|
99 |
+
" <td>0.750704</td>\n",
|
100 |
+
" <td>0.805136</td>\n",
|
101 |
+
" <td>0.776968</td>\n",
|
102 |
+
" <td>0.954031</td>\n",
|
103 |
+
" <td>{}</td>\n",
|
104 |
+
" </tr>\n",
|
105 |
+
" </tbody>\n",
|
106 |
+
"</table><p>"
|
107 |
+
],
|
108 |
+
"text/plain": [
|
109 |
+
"<IPython.core.display.HTML object>"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"metadata": {},
|
113 |
+
"output_type": "display_data"
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"name": "stderr",
|
117 |
+
"output_type": "stream",
|
118 |
+
"text": [
|
119 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
120 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
121 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
122 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
123 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
124 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
125 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
126 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"data": {
|
131 |
+
"text/html": [
|
132 |
+
"\n",
|
133 |
+
" <div>\n",
|
134 |
+
" \n",
|
135 |
+
" <progress value='27' max='27' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
136 |
+
" [27/27 00:01]\n",
|
137 |
+
" </div>\n",
|
138 |
+
" "
|
139 |
+
],
|
140 |
+
"text/plain": [
|
141 |
+
"<IPython.core.display.HTML object>"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"metadata": {},
|
145 |
+
"output_type": "display_data"
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"name": "stderr",
|
149 |
+
"output_type": "stream",
|
150 |
+
"text": [
|
151 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
152 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
153 |
+
"[I 2025-07-18 06:29:29,091] Trial 0 finished with value: 0.7945205479452055 and parameters: {'learning_rate': 2.3555847899573657e-05, 'batch_size': 8, 'num_epochs': 4}. Best is trial 0 with value: 0.7945205479452055.\n",
|
154 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at indobenchmark/indobert-base-p1 and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
155 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
156 |
+
"C:\\Users\\BUDI\\AppData\\Local\\Temp\\ipykernel_6152\\2584540621.py:147: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
157 |
+
" trainer = Trainer(\n"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"data": {
|
162 |
+
"text/html": [
|
163 |
+
"\n",
|
164 |
+
" <div>\n",
|
165 |
+
" \n",
|
166 |
+
" <progress value='1045' max='1045' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
167 |
+
" [1045/1045 04:05, Epoch 5/5]\n",
|
168 |
+
" </div>\n",
|
169 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
170 |
+
" <thead>\n",
|
171 |
+
" <tr style=\"text-align: left;\">\n",
|
172 |
+
" <th>Epoch</th>\n",
|
173 |
+
" <th>Training Loss</th>\n",
|
174 |
+
" <th>Validation Loss</th>\n",
|
175 |
+
" <th>Precision</th>\n",
|
176 |
+
" <th>Recall</th>\n",
|
177 |
+
" <th>F1</th>\n",
|
178 |
+
" <th>Accuracy</th>\n",
|
179 |
+
" <th>Per Entity</th>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" </thead>\n",
|
182 |
+
" <tbody>\n",
|
183 |
+
" <tr>\n",
|
184 |
+
" <td>1</td>\n",
|
185 |
+
" <td>0.123500</td>\n",
|
186 |
+
" <td>0.163488</td>\n",
|
187 |
+
" <td>0.728788</td>\n",
|
188 |
+
" <td>0.726586</td>\n",
|
189 |
+
" <td>0.727685</td>\n",
|
190 |
+
" <td>0.945009</td>\n",
|
191 |
+
" <td>{}</td>\n",
|
192 |
+
" </tr>\n",
|
193 |
+
" <tr>\n",
|
194 |
+
" <td>2</td>\n",
|
195 |
+
" <td>0.108800</td>\n",
|
196 |
+
" <td>0.155614</td>\n",
|
197 |
+
" <td>0.737346</td>\n",
|
198 |
+
" <td>0.814199</td>\n",
|
199 |
+
" <td>0.773869</td>\n",
|
200 |
+
" <td>0.953745</td>\n",
|
201 |
+
" <td>{}</td>\n",
|
202 |
+
" </tr>\n",
|
203 |
+
" <tr>\n",
|
204 |
+
" <td>3</td>\n",
|
205 |
+
" <td>0.110300</td>\n",
|
206 |
+
" <td>0.170470</td>\n",
|
207 |
+
" <td>0.763314</td>\n",
|
208 |
+
" <td>0.779456</td>\n",
|
209 |
+
" <td>0.771300</td>\n",
|
210 |
+
" <td>0.953172</td>\n",
|
211 |
+
" <td>{}</td>\n",
|
212 |
+
" </tr>\n",
|
213 |
+
" <tr>\n",
|
214 |
+
" <td>4</td>\n",
|
215 |
+
" <td>0.045800</td>\n",
|
216 |
+
" <td>0.182373</td>\n",
|
217 |
+
" <td>0.765557</td>\n",
|
218 |
+
" <td>0.799094</td>\n",
|
219 |
+
" <td>0.781966</td>\n",
|
220 |
+
" <td>0.954031</td>\n",
|
221 |
+
" <td>{}</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <td>5</td>\n",
|
225 |
+
" <td>0.022400</td>\n",
|
226 |
+
" <td>0.191159</td>\n",
|
227 |
+
" <td>0.758571</td>\n",
|
228 |
+
" <td>0.802115</td>\n",
|
229 |
+
" <td>0.779736</td>\n",
|
230 |
+
" <td>0.953315</td>\n",
|
231 |
+
" <td>{}</td>\n",
|
232 |
+
" </tr>\n",
|
233 |
+
" </tbody>\n",
|
234 |
+
"</table><p>"
|
235 |
+
],
|
236 |
+
"text/plain": [
|
237 |
+
"<IPython.core.display.HTML object>"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
"metadata": {},
|
241 |
+
"output_type": "display_data"
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"name": "stderr",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
248 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
249 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
250 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
251 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
252 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
253 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
254 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
255 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
256 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"data": {
|
261 |
+
"text/html": [
|
262 |
+
"\n",
|
263 |
+
" <div>\n",
|
264 |
+
" \n",
|
265 |
+
" <progress value='27' max='27' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
266 |
+
" [27/27 00:01]\n",
|
267 |
+
" </div>\n",
|
268 |
+
" "
|
269 |
+
],
|
270 |
+
"text/plain": [
|
271 |
+
"<IPython.core.display.HTML object>"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
"metadata": {},
|
275 |
+
"output_type": "display_data"
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"name": "stderr",
|
279 |
+
"output_type": "stream",
|
280 |
+
"text": [
|
281 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
282 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
283 |
+
"[I 2025-07-18 06:33:40,086] Trial 1 finished with value: 0.7819660014781965 and parameters: {'learning_rate': 1.7904807706862636e-05, 'batch_size': 8, 'num_epochs': 5}. Best is trial 0 with value: 0.7945205479452055.\n",
|
284 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at indobenchmark/indobert-base-p1 and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
285 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
286 |
+
"C:\\Users\\BUDI\\AppData\\Local\\Temp\\ipykernel_6152\\2584540621.py:147: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
287 |
+
" trainer = Trainer(\n"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"data": {
|
292 |
+
"text/html": [
|
293 |
+
"\n",
|
294 |
+
" <div>\n",
|
295 |
+
" \n",
|
296 |
+
" <progress value='420' max='420' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
297 |
+
" [420/420 05:47, Epoch 4/4]\n",
|
298 |
+
" </div>\n",
|
299 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
300 |
+
" <thead>\n",
|
301 |
+
" <tr style=\"text-align: left;\">\n",
|
302 |
+
" <th>Epoch</th>\n",
|
303 |
+
" <th>Training Loss</th>\n",
|
304 |
+
" <th>Validation Loss</th>\n",
|
305 |
+
" <th>Precision</th>\n",
|
306 |
+
" <th>Recall</th>\n",
|
307 |
+
" <th>F1</th>\n",
|
308 |
+
" <th>Accuracy</th>\n",
|
309 |
+
" <th>Per Entity</th>\n",
|
310 |
+
" </tr>\n",
|
311 |
+
" </thead>\n",
|
312 |
+
" <tbody>\n",
|
313 |
+
" <tr>\n",
|
314 |
+
" <td>1</td>\n",
|
315 |
+
" <td>0.138600</td>\n",
|
316 |
+
" <td>0.185550</td>\n",
|
317 |
+
" <td>0.738769</td>\n",
|
318 |
+
" <td>0.670695</td>\n",
|
319 |
+
" <td>0.703088</td>\n",
|
320 |
+
" <td>0.942432</td>\n",
|
321 |
+
" <td>{}</td>\n",
|
322 |
+
" </tr>\n",
|
323 |
+
" <tr>\n",
|
324 |
+
" <td>2</td>\n",
|
325 |
+
" <td>0.109800</td>\n",
|
326 |
+
" <td>0.154619</td>\n",
|
327 |
+
" <td>0.781899</td>\n",
|
328 |
+
" <td>0.796073</td>\n",
|
329 |
+
" <td>0.788922</td>\n",
|
330 |
+
" <td>0.955463</td>\n",
|
331 |
+
" <td>{}</td>\n",
|
332 |
+
" </tr>\n",
|
333 |
+
" <tr>\n",
|
334 |
+
" <td>3</td>\n",
|
335 |
+
" <td>0.069800</td>\n",
|
336 |
+
" <td>0.155078</td>\n",
|
337 |
+
" <td>0.807750</td>\n",
|
338 |
+
" <td>0.818731</td>\n",
|
339 |
+
" <td>0.813203</td>\n",
|
340 |
+
" <td>0.960332</td>\n",
|
341 |
+
" <td>{}</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" <tr>\n",
|
344 |
+
" <td>4</td>\n",
|
345 |
+
" <td>0.027200</td>\n",
|
346 |
+
" <td>0.174292</td>\n",
|
347 |
+
" <td>0.765292</td>\n",
|
348 |
+
" <td>0.812689</td>\n",
|
349 |
+
" <td>0.788278</td>\n",
|
350 |
+
" <td>0.954747</td>\n",
|
351 |
+
" <td>{}</td>\n",
|
352 |
+
" </tr>\n",
|
353 |
+
" </tbody>\n",
|
354 |
+
"</table><p>"
|
355 |
+
],
|
356 |
+
"text/plain": [
|
357 |
+
"<IPython.core.display.HTML object>"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
"metadata": {},
|
361 |
+
"output_type": "display_data"
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"name": "stderr",
|
365 |
+
"output_type": "stream",
|
366 |
+
"text": [
|
367 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
368 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
369 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
370 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
371 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
372 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
373 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
374 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"data": {
|
379 |
+
"text/html": [
|
380 |
+
"\n",
|
381 |
+
" <div>\n",
|
382 |
+
" \n",
|
383 |
+
" <progress value='14' max='14' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
384 |
+
" [14/14 00:00]\n",
|
385 |
+
" </div>\n",
|
386 |
+
" "
|
387 |
+
],
|
388 |
+
"text/plain": [
|
389 |
+
"<IPython.core.display.HTML object>"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
"metadata": {},
|
393 |
+
"output_type": "display_data"
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"name": "stderr",
|
397 |
+
"output_type": "stream",
|
398 |
+
"text": [
|
399 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
400 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
401 |
+
"[I 2025-07-18 06:39:32,835] Trial 2 finished with value: 0.8132033008252062 and parameters: {'learning_rate': 3.672145523121866e-05, 'batch_size': 16, 'num_epochs': 4}. Best is trial 2 with value: 0.8132033008252062.\n",
|
402 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at indobenchmark/indobert-base-p1 and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
403 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
404 |
+
"C:\\Users\\BUDI\\AppData\\Local\\Temp\\ipykernel_6152\\2584540621.py:147: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
405 |
+
" trainer = Trainer(\n"
|
406 |
+
]
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"data": {
|
410 |
+
"text/html": [
|
411 |
+
"\n",
|
412 |
+
" <div>\n",
|
413 |
+
" \n",
|
414 |
+
" <progress value='525' max='525' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
415 |
+
" [525/525 07:42, Epoch 5/5]\n",
|
416 |
+
" </div>\n",
|
417 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
418 |
+
" <thead>\n",
|
419 |
+
" <tr style=\"text-align: left;\">\n",
|
420 |
+
" <th>Epoch</th>\n",
|
421 |
+
" <th>Training Loss</th>\n",
|
422 |
+
" <th>Validation Loss</th>\n",
|
423 |
+
" <th>Precision</th>\n",
|
424 |
+
" <th>Recall</th>\n",
|
425 |
+
" <th>F1</th>\n",
|
426 |
+
" <th>Accuracy</th>\n",
|
427 |
+
" <th>Per Entity</th>\n",
|
428 |
+
" </tr>\n",
|
429 |
+
" </thead>\n",
|
430 |
+
" <tbody>\n",
|
431 |
+
" <tr>\n",
|
432 |
+
" <td>1</td>\n",
|
433 |
+
" <td>0.143200</td>\n",
|
434 |
+
" <td>0.170970</td>\n",
|
435 |
+
" <td>0.745514</td>\n",
|
436 |
+
" <td>0.690332</td>\n",
|
437 |
+
" <td>0.716863</td>\n",
|
438 |
+
" <td>0.945869</td>\n",
|
439 |
+
" <td>{}</td>\n",
|
440 |
+
" </tr>\n",
|
441 |
+
" <tr>\n",
|
442 |
+
" <td>2</td>\n",
|
443 |
+
" <td>0.107300</td>\n",
|
444 |
+
" <td>0.154406</td>\n",
|
445 |
+
" <td>0.766141</td>\n",
|
446 |
+
" <td>0.806647</td>\n",
|
447 |
+
" <td>0.785872</td>\n",
|
448 |
+
" <td>0.953029</td>\n",
|
449 |
+
" <td>{}</td>\n",
|
450 |
+
" </tr>\n",
|
451 |
+
" <tr>\n",
|
452 |
+
" <td>3</td>\n",
|
453 |
+
" <td>0.075100</td>\n",
|
454 |
+
" <td>0.158503</td>\n",
|
455 |
+
" <td>0.795420</td>\n",
|
456 |
+
" <td>0.787009</td>\n",
|
457 |
+
" <td>0.791192</td>\n",
|
458 |
+
" <td>0.956895</td>\n",
|
459 |
+
" <td>{}</td>\n",
|
460 |
+
" </tr>\n",
|
461 |
+
" <tr>\n",
|
462 |
+
" <td>4</td>\n",
|
463 |
+
" <td>0.025800</td>\n",
|
464 |
+
" <td>0.179348</td>\n",
|
465 |
+
" <td>0.764791</td>\n",
|
466 |
+
" <td>0.800604</td>\n",
|
467 |
+
" <td>0.782288</td>\n",
|
468 |
+
" <td>0.954461</td>\n",
|
469 |
+
" <td>{}</td>\n",
|
470 |
+
" </tr>\n",
|
471 |
+
" <tr>\n",
|
472 |
+
" <td>5</td>\n",
|
473 |
+
" <td>0.013400</td>\n",
|
474 |
+
" <td>0.185257</td>\n",
|
475 |
+
" <td>0.766049</td>\n",
|
476 |
+
" <td>0.811178</td>\n",
|
477 |
+
" <td>0.787968</td>\n",
|
478 |
+
" <td>0.953888</td>\n",
|
479 |
+
" <td>{}</td>\n",
|
480 |
+
" </tr>\n",
|
481 |
+
" </tbody>\n",
|
482 |
+
"</table><p>"
|
483 |
+
],
|
484 |
+
"text/plain": [
|
485 |
+
"<IPython.core.display.HTML object>"
|
486 |
+
]
|
487 |
+
},
|
488 |
+
"metadata": {},
|
489 |
+
"output_type": "display_data"
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"name": "stderr",
|
493 |
+
"output_type": "stream",
|
494 |
+
"text": [
|
495 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
496 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
497 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
498 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
499 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
500 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
501 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
502 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
503 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
504 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
505 |
+
]
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"data": {
|
509 |
+
"text/html": [
|
510 |
+
"\n",
|
511 |
+
" <div>\n",
|
512 |
+
" \n",
|
513 |
+
" <progress value='14' max='14' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
514 |
+
" [14/14 00:01]\n",
|
515 |
+
" </div>\n",
|
516 |
+
" "
|
517 |
+
],
|
518 |
+
"text/plain": [
|
519 |
+
"<IPython.core.display.HTML object>"
|
520 |
+
]
|
521 |
+
},
|
522 |
+
"metadata": {},
|
523 |
+
"output_type": "display_data"
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"name": "stderr",
|
527 |
+
"output_type": "stream",
|
528 |
+
"text": [
|
529 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
530 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
531 |
+
"[I 2025-07-18 06:47:22,280] Trial 3 finished with value: 0.7911921032649962 and parameters: {'learning_rate': 3.713773945286763e-05, 'batch_size': 16, 'num_epochs': 5}. Best is trial 2 with value: 0.8132033008252062.\n",
|
532 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at indobenchmark/indobert-base-p1 and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
533 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
534 |
+
"C:\\Users\\BUDI\\AppData\\Local\\Temp\\ipykernel_6152\\2584540621.py:147: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
535 |
+
" trainer = Trainer(\n"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"data": {
|
540 |
+
"text/html": [
|
541 |
+
"\n",
|
542 |
+
" <div>\n",
|
543 |
+
" \n",
|
544 |
+
" <progress value='1045' max='1045' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
545 |
+
" [1045/1045 04:30, Epoch 5/5]\n",
|
546 |
+
" </div>\n",
|
547 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
548 |
+
" <thead>\n",
|
549 |
+
" <tr style=\"text-align: left;\">\n",
|
550 |
+
" <th>Epoch</th>\n",
|
551 |
+
" <th>Training Loss</th>\n",
|
552 |
+
" <th>Validation Loss</th>\n",
|
553 |
+
" <th>Precision</th>\n",
|
554 |
+
" <th>Recall</th>\n",
|
555 |
+
" <th>F1</th>\n",
|
556 |
+
" <th>Accuracy</th>\n",
|
557 |
+
" <th>Per Entity</th>\n",
|
558 |
+
" </tr>\n",
|
559 |
+
" </thead>\n",
|
560 |
+
" <tbody>\n",
|
561 |
+
" <tr>\n",
|
562 |
+
" <td>1</td>\n",
|
563 |
+
" <td>0.132700</td>\n",
|
564 |
+
" <td>0.169205</td>\n",
|
565 |
+
" <td>0.715361</td>\n",
|
566 |
+
" <td>0.717523</td>\n",
|
567 |
+
" <td>0.716440</td>\n",
|
568 |
+
" <td>0.944007</td>\n",
|
569 |
+
" <td>{}</td>\n",
|
570 |
+
" </tr>\n",
|
571 |
+
" <tr>\n",
|
572 |
+
" <td>2</td>\n",
|
573 |
+
" <td>0.120000</td>\n",
|
574 |
+
" <td>0.155390</td>\n",
|
575 |
+
" <td>0.750700</td>\n",
|
576 |
+
" <td>0.809668</td>\n",
|
577 |
+
" <td>0.779070</td>\n",
|
578 |
+
" <td>0.953458</td>\n",
|
579 |
+
" <td>{}</td>\n",
|
580 |
+
" </tr>\n",
|
581 |
+
" <tr>\n",
|
582 |
+
" <td>3</td>\n",
|
583 |
+
" <td>0.136600</td>\n",
|
584 |
+
" <td>0.163555</td>\n",
|
585 |
+
" <td>0.761974</td>\n",
|
586 |
+
" <td>0.793051</td>\n",
|
587 |
+
" <td>0.777202</td>\n",
|
588 |
+
" <td>0.954174</td>\n",
|
589 |
+
" <td>{}</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <td>4</td>\n",
|
593 |
+
" <td>0.067900</td>\n",
|
594 |
+
" <td>0.172124</td>\n",
|
595 |
+
" <td>0.766476</td>\n",
|
596 |
+
" <td>0.808157</td>\n",
|
597 |
+
" <td>0.786765</td>\n",
|
598 |
+
" <td>0.953888</td>\n",
|
599 |
+
" <td>{}</td>\n",
|
600 |
+
" </tr>\n",
|
601 |
+
" <tr>\n",
|
602 |
+
" <td>5</td>\n",
|
603 |
+
" <td>0.035200</td>\n",
|
604 |
+
" <td>0.180249</td>\n",
|
605 |
+
" <td>0.759943</td>\n",
|
606 |
+
" <td>0.808157</td>\n",
|
607 |
+
" <td>0.783309</td>\n",
|
608 |
+
" <td>0.953745</td>\n",
|
609 |
+
" <td>{}</td>\n",
|
610 |
+
" </tr>\n",
|
611 |
+
" </tbody>\n",
|
612 |
+
"</table><p>"
|
613 |
+
],
|
614 |
+
"text/plain": [
|
615 |
+
"<IPython.core.display.HTML object>"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
"metadata": {},
|
619 |
+
"output_type": "display_data"
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"name": "stderr",
|
623 |
+
"output_type": "stream",
|
624 |
+
"text": [
|
625 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
626 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
627 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
628 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
629 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
630 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
631 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
632 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
633 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
634 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"data": {
|
639 |
+
"text/html": [
|
640 |
+
"\n",
|
641 |
+
" <div>\n",
|
642 |
+
" \n",
|
643 |
+
" <progress value='27' max='27' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
644 |
+
" [27/27 00:01]\n",
|
645 |
+
" </div>\n",
|
646 |
+
" "
|
647 |
+
],
|
648 |
+
"text/plain": [
|
649 |
+
"<IPython.core.display.HTML object>"
|
650 |
+
]
|
651 |
+
},
|
652 |
+
"metadata": {},
|
653 |
+
"output_type": "display_data"
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"name": "stderr",
|
657 |
+
"output_type": "stream",
|
658 |
+
"text": [
|
659 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
660 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
661 |
+
"[I 2025-07-18 06:51:59,633] Trial 4 finished with value: 0.7867647058823529 and parameters: {'learning_rate': 1.1923156920458335e-05, 'batch_size': 8, 'num_epochs': 5}. Best is trial 2 with value: 0.8132033008252062.\n"
|
662 |
+
]
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"name": "stdout",
|
666 |
+
"output_type": "stream",
|
667 |
+
"text": [
|
668 |
+
"\n",
|
669 |
+
"Hyperparameter terbaik:\n",
|
670 |
+
"{'learning_rate': 3.672145523121866e-05, 'batch_size': 16, 'num_epochs': 4}\n",
|
671 |
+
"F1-Score terbaik: 0.8132\n"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"name": "stderr",
|
676 |
+
"output_type": "stream",
|
677 |
+
"text": [
|
678 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at indobenchmark/indobert-base-p1 and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
679 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
680 |
+
"C:\\Users\\BUDI\\AppData\\Local\\Temp\\ipykernel_6152\\2584540621.py:195: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
681 |
+
" trainer = Trainer(\n"
|
682 |
+
]
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"name": "stdout",
|
686 |
+
"output_type": "stream",
|
687 |
+
"text": [
|
688 |
+
"\n",
|
689 |
+
"Memulai pelatihan dengan hyperparameter terbaik...\n"
|
690 |
+
]
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"data": {
|
694 |
+
"text/html": [
|
695 |
+
"\n",
|
696 |
+
" <div>\n",
|
697 |
+
" \n",
|
698 |
+
" <progress value='420' max='420' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
699 |
+
" [420/420 07:01, Epoch 4/4]\n",
|
700 |
+
" </div>\n",
|
701 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
702 |
+
" <thead>\n",
|
703 |
+
" <tr style=\"text-align: left;\">\n",
|
704 |
+
" <th>Epoch</th>\n",
|
705 |
+
" <th>Training Loss</th>\n",
|
706 |
+
" <th>Validation Loss</th>\n",
|
707 |
+
" <th>Precision</th>\n",
|
708 |
+
" <th>Recall</th>\n",
|
709 |
+
" <th>F1</th>\n",
|
710 |
+
" <th>Accuracy</th>\n",
|
711 |
+
" <th>Per Entity</th>\n",
|
712 |
+
" </tr>\n",
|
713 |
+
" </thead>\n",
|
714 |
+
" <tbody>\n",
|
715 |
+
" <tr>\n",
|
716 |
+
" <td>1</td>\n",
|
717 |
+
" <td>0.138600</td>\n",
|
718 |
+
" <td>0.185550</td>\n",
|
719 |
+
" <td>0.738769</td>\n",
|
720 |
+
" <td>0.670695</td>\n",
|
721 |
+
" <td>0.703088</td>\n",
|
722 |
+
" <td>0.942432</td>\n",
|
723 |
+
" <td>{}</td>\n",
|
724 |
+
" </tr>\n",
|
725 |
+
" <tr>\n",
|
726 |
+
" <td>2</td>\n",
|
727 |
+
" <td>0.109800</td>\n",
|
728 |
+
" <td>0.154619</td>\n",
|
729 |
+
" <td>0.781899</td>\n",
|
730 |
+
" <td>0.796073</td>\n",
|
731 |
+
" <td>0.788922</td>\n",
|
732 |
+
" <td>0.955463</td>\n",
|
733 |
+
" <td>{}</td>\n",
|
734 |
+
" </tr>\n",
|
735 |
+
" <tr>\n",
|
736 |
+
" <td>3</td>\n",
|
737 |
+
" <td>0.069800</td>\n",
|
738 |
+
" <td>0.155078</td>\n",
|
739 |
+
" <td>0.807750</td>\n",
|
740 |
+
" <td>0.818731</td>\n",
|
741 |
+
" <td>0.813203</td>\n",
|
742 |
+
" <td>0.960332</td>\n",
|
743 |
+
" <td>{}</td>\n",
|
744 |
+
" </tr>\n",
|
745 |
+
" <tr>\n",
|
746 |
+
" <td>4</td>\n",
|
747 |
+
" <td>0.027200</td>\n",
|
748 |
+
" <td>0.174292</td>\n",
|
749 |
+
" <td>0.765292</td>\n",
|
750 |
+
" <td>0.812689</td>\n",
|
751 |
+
" <td>0.788278</td>\n",
|
752 |
+
" <td>0.954747</td>\n",
|
753 |
+
" <td>{}</td>\n",
|
754 |
+
" </tr>\n",
|
755 |
+
" </tbody>\n",
|
756 |
+
"</table><p>"
|
757 |
+
],
|
758 |
+
"text/plain": [
|
759 |
+
"<IPython.core.display.HTML object>"
|
760 |
+
]
|
761 |
+
},
|
762 |
+
"metadata": {},
|
763 |
+
"output_type": "display_data"
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"name": "stderr",
|
767 |
+
"output_type": "stream",
|
768 |
+
"text": [
|
769 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
770 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
771 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
772 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
773 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
774 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
|
775 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
776 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
777 |
+
]
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"name": "stdout",
|
781 |
+
"output_type": "stream",
|
782 |
+
"text": [
|
783 |
+
"\n",
|
784 |
+
"Mengevaluasi model pada data test...\n"
|
785 |
+
]
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"data": {
|
789 |
+
"text/html": [
|
790 |
+
"\n",
|
791 |
+
" <div>\n",
|
792 |
+
" \n",
|
793 |
+
" <progress value='14' max='14' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
794 |
+
" [14/14 00:05]\n",
|
795 |
+
" </div>\n",
|
796 |
+
" "
|
797 |
+
],
|
798 |
+
"text/plain": [
|
799 |
+
"<IPython.core.display.HTML object>"
|
800 |
+
]
|
801 |
+
},
|
802 |
+
"metadata": {},
|
803 |
+
"output_type": "display_data"
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"name": "stderr",
|
807 |
+
"output_type": "stream",
|
808 |
+
"text": [
|
809 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval_per_entity\" as a metric. MLflow's log_metric() only accepts float and int types so we dropped this attribute.\n",
|
810 |
+
"Trainer is attempting to log a value of \"{}\" of type <class 'dict'> for key \"eval/per_entity\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"name": "stdout",
|
815 |
+
"output_type": "stream",
|
816 |
+
"text": [
|
817 |
+
"\n",
|
818 |
+
"Hasil Evaluasi:\n",
|
819 |
+
"Precision: 0.7528\n",
|
820 |
+
"Recall: 0.7878\n",
|
821 |
+
"F1-Score: 0.7699\n",
|
822 |
+
"Accuracy: 0.9497\n",
|
823 |
+
"\n",
|
824 |
+
"Metrik per Entitas:\n",
|
825 |
+
"\n",
|
826 |
+
"Model dan tokenizer telah disimpan ke './ner_model'\n",
|
827 |
+
"\n",
|
828 |
+
"Contoh Prediksi pada Data Test (5 Sampel):\n",
|
829 |
+
"\n",
|
830 |
+
"Sampel 1:\n",
|
831 |
+
"Tokens: [CLS] joe ##tat ##a hadi ##hard ##aja dan dihadiri oleh rektor undip prof . [SEP]\n",
|
832 |
+
"True Labels: ['B-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'B-ORGANISATION', 'O', 'O']\n",
|
833 |
+
"Predicted Labels: ['B-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'B-PLACE', 'O', 'O']\n",
|
834 |
+
"\n",
|
835 |
+
"Sampel 2:\n",
|
836 |
+
"Tokens: [CLS] sejak masih duduk di bangku sekolah tk kevin sudah belajar alat musik piano secara formal dan ketika ia menginjak sekolah smp pemilik nama asli kevin april ##io sum ##aat ##maj ##a ini , mulai belajar menulis lagu sendiri . [SEP]\n",
|
837 |
+
"True Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']\n",
|
838 |
+
"Predicted Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']\n",
|
839 |
+
"\n",
|
840 |
+
"Sampel 3:\n",
|
841 |
+
"Tokens: [CLS] pada tanggal 6 februari 1976 , wakil ketua lock ##he ##ed corporation memberitahu subk ##omi ##te senat as bahwa tana ##ka selaku pm telah dibayar ( dis ##ogo ##k ) sebagai ganjaran pembelian pesawat lock ##he ##ed l - 1011 . [SEP]\n",
|
842 |
+
"True Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-ORGANISATION', 'I-ORGANISATION', 'O', 'O', 'O', 'B-PLACE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-ORGANISATION', 'O', 'O', 'O', 'O']\n",
|
843 |
+
"Predicted Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-ORGANISATION', 'I-ORGANISATION', 'O', 'O', 'O', 'B-PLACE', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-ORGANISATION', 'O', 'O', 'O', 'O']\n",
|
844 |
+
"\n",
|
845 |
+
"Sampel 4:\n",
|
846 |
+
"Tokens: [CLS] dengan kondisi alam yang sejuk dan curah hujan yang tinggi maka didaerah tersebut banyak didapati bermacam jenis flora dan fauna seperti : gajah yang di kenal dengan legenda poc ##ut me ##urah ##nya , rusa , harimau , beruang , kancil , babi hutan , tengg ##iling , landak dan ular , juga terdapat berbagai macam jenis burung yang selalu menghiasi kawasan ini . [SEP]\n",
|
847 |
+
"True Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']\n",
|
848 |
+
"Predicted Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']\n",
|
849 |
+
"\n",
|
850 |
+
"Sampel 5:\n",
|
851 |
+
"Tokens: [CLS] awak pesawat yang terdiri atas pilot ard ##y ted ##jo , kopi ##lot h ribuan dan dua awak lainnya perry reh ##ata dan mei ##nas ##ta segera membuka pintu pesawat dan menurunkan penumpang dengan selamat . tanggal 14 juni 2009 , hari minggu , pukul 09 . 20 , pesawat terbang express air jenis dor ##nie ##r d ##32 ##8 - 100 bernomor badan pk - tx ##n , mengalami kecelakaan saat mendarat . [SEP]\n",
|
852 |
+
"True Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-ORGANISATION', 'I-ORGANISATION', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']\n",
|
853 |
+
"Predicted Labels: ['O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERSON', 'I-PERSON', 'O', 'B-PERSON', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']\n",
|
854 |
+
"\n",
|
855 |
+
"Analisis Pola Error (Tanggal diprediksi sebagai Lokasi):\n",
|
856 |
+
"Tidak ditemukan contoh tanggal yang diprediksi sebagai lokasi dalam 100 sampel.\n",
|
857 |
+
"\n",
|
858 |
+
"Pertimbangan Keamanan Data, Privasi, dan Etika:\n",
|
859 |
+
"- Dataset bersumber dari berita publik, tidak mengandung informasi sensitif seperti alamat atau nomor identitas.\n",
|
860 |
+
"- Nama orang dalam dataset berasal dari media publik, aman untuk digunakan.\n",
|
861 |
+
"- Dataset mencakup berbagai topik berita, mengurangi risiko bias terhadap entitas tertentu.\n"
|
862 |
+
]
|
863 |
+
}
|
864 |
+
],
|
865 |
+
"source": [
|
866 |
+
"import os\n",
|
867 |
+
"import sys\n",
|
868 |
+
"import subprocess\n",
|
869 |
+
"import numpy as np\n",
|
870 |
+
"from datasets import load_dataset\n",
|
871 |
+
"from transformers import AutoTokenizer, AutoModelForTokenClassification, DataCollatorForTokenClassification, Trainer, TrainingArguments\n",
|
872 |
+
"import evaluate\n",
|
873 |
+
"import torch\n",
|
874 |
+
"import optuna\n",
|
875 |
+
"\n",
|
876 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
877 |
+
"print(f\"Menggunakan perangkat: {device}\")\n",
|
878 |
+
"\n",
|
879 |
+
"# Load dataset\n",
|
880 |
+
"try:\n",
|
881 |
+
" dataset = load_dataset(\"indonlp/indonlu\", \"nergrit\", trust_remote_code=True)\n",
|
882 |
+
"except Exception as e:\n",
|
883 |
+
" print(f\"Gagal memuat dataset: {e}\")\n",
|
884 |
+
" sys.exit(1)\n",
|
885 |
+
"\n",
|
886 |
+
"# Verify dataset structure\n",
|
887 |
+
"if \"train\" not in dataset or \"validation\" not in dataset or \"test\" not in dataset:\n",
|
888 |
+
" print(\"Dataset tidak memiliki split train/validation/test yang diharapkan.\")\n",
|
889 |
+
" sys.exit(1)\n",
|
890 |
+
"if \"tokens\" not in dataset[\"train\"].column_names or \"ner_tags\" not in dataset[\"train\"].column_names:\n",
|
891 |
+
" print(\"Dataset tidak memiliki kolom 'tokens' atau 'ner_tags'.\")\n",
|
892 |
+
" sys.exit(1)\n",
|
893 |
+
"\n",
|
894 |
+
"# Define label list\n",
|
895 |
+
"try:\n",
|
896 |
+
" label_list = dataset[\"train\"].features[\"ner_tags\"].feature.names\n",
|
897 |
+
" label2id = {label: i for i, label in enumerate(label_list)}\n",
|
898 |
+
" id2label = {i: label for i, label in enumerate(label_list)}\n",
|
899 |
+
"except Exception as e:\n",
|
900 |
+
" print(f\"Gagal mendapatkan label: {e}\")\n",
|
901 |
+
" sys.exit(1)\n",
|
902 |
+
"\n",
|
903 |
+
"# Load tokenizer\n",
|
904 |
+
"try:\n",
|
905 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"indobenchmark/indobert-base-p1\")\n",
|
906 |
+
"except Exception as e:\n",
|
907 |
+
" print(f\"Gagal memuat tokenizer: {e}\")\n",
|
908 |
+
" sys.exit(1)\n",
|
909 |
+
"\n",
|
910 |
+
"# Tokenize and align labels\n",
|
911 |
+
"def tokenize_and_align_labels(examples):\n",
|
912 |
+
" tokenized_inputs = tokenizer(examples[\"tokens\"], truncation=True, is_split_into_words=True)\n",
|
913 |
+
" labels = []\n",
|
914 |
+
" for i, label in enumerate(examples[\"ner_tags\"]):\n",
|
915 |
+
" word_ids = tokenized_inputs.word_ids(batch_index=i)\n",
|
916 |
+
" previous_word_idx = None\n",
|
917 |
+
" label_ids = []\n",
|
918 |
+
" for word_idx in word_ids:\n",
|
919 |
+
" if word_idx is None:\n",
|
920 |
+
" label_ids.append(-100)\n",
|
921 |
+
" elif word_idx != previous_word_idx:\n",
|
922 |
+
" label_ids.append(label[word_idx])\n",
|
923 |
+
" else:\n",
|
924 |
+
" label_ids.append(-100)\n",
|
925 |
+
" previous_word_idx = word_idx\n",
|
926 |
+
" labels.append(label_ids)\n",
|
927 |
+
" tokenized_inputs[\"labels\"] = labels\n",
|
928 |
+
" return tokenized_inputs\n",
|
929 |
+
"\n",
|
930 |
+
"# Tokenize dataset\n",
|
931 |
+
"try:\n",
|
932 |
+
" tokenized_dataset = dataset.map(tokenize_and_align_labels, batched=True)\n",
|
933 |
+
"except Exception as e:\n",
|
934 |
+
" print(f\"Gagal menokenisasi dataset: {e}\")\n",
|
935 |
+
" sys.exit(1)\n",
|
936 |
+
"\n",
|
937 |
+
"# Data collator\n",
|
938 |
+
"data_collator = DataCollatorForTokenClassification(tokenizer)\n",
|
939 |
+
"\n",
|
940 |
+
"# Load evaluation metric\n",
|
941 |
+
"metric = evaluate.load(\"seqeval\")\n",
|
942 |
+
"\n",
|
943 |
+
"# Compute metrics\n",
|
944 |
+
"def compute_metrics(p):\n",
|
945 |
+
" predictions, labels = p\n",
|
946 |
+
" predictions = np.argmax(predictions, axis=2)\n",
|
947 |
+
" true_labels = [[id2label[l] for l in label if l != -100] for label in labels]\n",
|
948 |
+
" pred_labels = [[id2label[p] for p, l in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels)]\n",
|
949 |
+
" results = metric.compute(predictions=pred_labels, references=true_labels)\n",
|
950 |
+
" per_entity = {}\n",
|
951 |
+
" for entity in [\"PERSON\", \"ORGANISATION\", \"PLACE\", \"DATE\"]:\n",
|
952 |
+
" if entity.lower() in results:\n",
|
953 |
+
" per_entity[entity] = {\n",
|
954 |
+
" \"precision\": results[entity.lower()][\"precision\"],\n",
|
955 |
+
" \"recall\": results[entity.lower()][\"recall\"],\n",
|
956 |
+
" \"f1\": results[entity.lower()][\"f1\"],\n",
|
957 |
+
" }\n",
|
958 |
+
" return {\n",
|
959 |
+
" \"precision\": results[\"overall_precision\"],\n",
|
960 |
+
" \"recall\": results[\"overall_recall\"],\n",
|
961 |
+
" \"f1\": results[\"overall_f1\"],\n",
|
962 |
+
" \"accuracy\": results[\"overall_accuracy\"],\n",
|
963 |
+
" \"per_entity\": per_entity,\n",
|
964 |
+
" }\n",
|
965 |
+
"\n",
|
966 |
+
"# Define objective function for Optuna\n",
|
967 |
+
"def objective(trial):\n",
|
968 |
+
" # Define hyperparameter search space\n",
|
969 |
+
" learning_rate = trial.suggest_float(\"learning_rate\", 1e-5, 5e-5, log=True)\n",
|
970 |
+
" batch_size = trial.suggest_categorical(\"batch_size\", [8, 16, 32])\n",
|
971 |
+
" num_epochs = trial.suggest_int(\"num_epochs\", 3, 5)\n",
|
972 |
+
"\n",
|
973 |
+
" # Load model for each trial\n",
|
974 |
+
" model = AutoModelForTokenClassification.from_pretrained(\n",
|
975 |
+
" \"indobenchmark/indobert-base-p1\",\n",
|
976 |
+
" num_labels=len(label_list),\n",
|
977 |
+
" id2label=id2label,\n",
|
978 |
+
" label2id=label2id\n",
|
979 |
+
" )\n",
|
980 |
+
" model.to(device)\n",
|
981 |
+
"\n",
|
982 |
+
" # Set training arguments\n",
|
983 |
+
" training_args = TrainingArguments(\n",
|
984 |
+
" output_dir=f\"./results_trial_{trial.number}\",\n",
|
985 |
+
" eval_strategy=\"epoch\",\n",
|
986 |
+
" learning_rate=learning_rate,\n",
|
987 |
+
" per_device_train_batch_size=batch_size,\n",
|
988 |
+
" per_device_eval_batch_size=batch_size,\n",
|
989 |
+
" num_train_epochs=num_epochs,\n",
|
990 |
+
" weight_decay=0.01,\n",
|
991 |
+
" logging_dir=f\"./logs_trial_{trial.number}\",\n",
|
992 |
+
" logging_steps=10,\n",
|
993 |
+
" save_strategy=\"epoch\",\n",
|
994 |
+
" load_best_model_at_end=True,\n",
|
995 |
+
" metric_for_best_model=\"f1\",\n",
|
996 |
+
" )\n",
|
997 |
+
"\n",
|
998 |
+
" # Initialize Trainer\n",
|
999 |
+
" trainer = Trainer(\n",
|
1000 |
+
" model=model,\n",
|
1001 |
+
" args=training_args,\n",
|
1002 |
+
" train_dataset=tokenized_dataset[\"train\"],\n",
|
1003 |
+
" eval_dataset=tokenized_dataset[\"validation\"],\n",
|
1004 |
+
" tokenizer=tokenizer,\n",
|
1005 |
+
" data_collator=data_collator,\n",
|
1006 |
+
" compute_metrics=compute_metrics,\n",
|
1007 |
+
" )\n",
|
1008 |
+
"\n",
|
1009 |
+
" # Train and evaluate\n",
|
1010 |
+
" trainer.train()\n",
|
1011 |
+
" eval_results = trainer.evaluate()\n",
|
1012 |
+
" return eval_results[\"eval_f1\"]\n",
|
1013 |
+
"\n",
|
1014 |
+
"# Run Optuna optimization\n",
|
1015 |
+
"print(\"Memulai hyperparameter tuning dengan Optuna...\")\n",
|
1016 |
+
"study = optuna.create_study(direction=\"maximize\")\n",
|
1017 |
+
"study.optimize(objective, n_trials=5) # Adjust n_trials as needed\n",
|
1018 |
+
"print(\"\\nHyperparameter terbaik:\")\n",
|
1019 |
+
"print(study.best_params)\n",
|
1020 |
+
"print(f\"F1-Score terbaik: {study.best_value:.4f}\")\n",
|
1021 |
+
"\n",
|
1022 |
+
"# Train final model with best hyperparameters\n",
|
1023 |
+
"best_params = study.best_params\n",
|
1024 |
+
"model = AutoModelForTokenClassification.from_pretrained(\n",
|
1025 |
+
" \"indobenchmark/indobert-base-p1\",\n",
|
1026 |
+
" num_labels=len(label_list),\n",
|
1027 |
+
" id2label=id2label,\n",
|
1028 |
+
" label2id=label2id\n",
|
1029 |
+
")\n",
|
1030 |
+
"model.to(device)\n",
|
1031 |
+
"\n",
|
1032 |
+
"training_args = TrainingArguments(\n",
|
1033 |
+
" output_dir=\"./results\",\n",
|
1034 |
+
" eval_strategy=\"epoch\",\n",
|
1035 |
+
" learning_rate=best_params[\"learning_rate\"],\n",
|
1036 |
+
" per_device_train_batch_size=best_params[\"batch_size\"],\n",
|
1037 |
+
" per_device_eval_batch_size=best_params[\"batch_size\"],\n",
|
1038 |
+
" num_train_epochs=best_params[\"num_epochs\"],\n",
|
1039 |
+
" weight_decay=0.01,\n",
|
1040 |
+
" logging_dir=\"./logs\",\n",
|
1041 |
+
" logging_steps=10,\n",
|
1042 |
+
" save_strategy=\"epoch\",\n",
|
1043 |
+
" load_best_model_at_end=True,\n",
|
1044 |
+
" metric_for_best_model=\"f1\",\n",
|
1045 |
+
")\n",
|
1046 |
+
"\n",
|
1047 |
+
"trainer = Trainer(\n",
|
1048 |
+
" model=model,\n",
|
1049 |
+
" args=training_args,\n",
|
1050 |
+
" train_dataset=tokenized_dataset[\"train\"],\n",
|
1051 |
+
" eval_dataset=tokenized_dataset[\"validation\"],\n",
|
1052 |
+
" tokenizer=tokenizer,\n",
|
1053 |
+
" data_collator=data_collator,\n",
|
1054 |
+
" compute_metrics=compute_metrics,\n",
|
1055 |
+
")\n",
|
1056 |
+
"\n",
|
1057 |
+
"# Train the model\n",
|
1058 |
+
"print(\"\\nMemulai pelatihan dengan hyperparameter terbaik...\")\n",
|
1059 |
+
"try:\n",
|
1060 |
+
" trainer.train()\n",
|
1061 |
+
"except Exception as e:\n",
|
1062 |
+
" print(f\"Gagal melatih model: {e}\")\n",
|
1063 |
+
" sys.exit(1)\n",
|
1064 |
+
"\n",
|
1065 |
+
"# Evaluate on test set\n",
|
1066 |
+
"print(\"\\nMengevaluasi model pada data test...\")\n",
|
1067 |
+
"try:\n",
|
1068 |
+
" results = trainer.evaluate(tokenized_dataset[\"test\"])\n",
|
1069 |
+
"except Exception as e:\n",
|
1070 |
+
" print(f\"Gagal mengevaluasi model: {e}\")\n",
|
1071 |
+
" sys.exit(1)\n",
|
1072 |
+
"\n",
|
1073 |
+
"# Print evaluation results\n",
|
1074 |
+
"print(\"\\nHasil Evaluasi:\")\n",
|
1075 |
+
"print(f\"Precision: {results['eval_precision']:.4f}\")\n",
|
1076 |
+
"print(f\"Recall: {results['eval_recall']:.4f}\")\n",
|
1077 |
+
"print(f\"F1-Score: {results['eval_f1']:.4f}\")\n",
|
1078 |
+
"print(f\"Accuracy: {results['eval_accuracy']:.4f}\")\n",
|
1079 |
+
"print(\"\\nMetrik per Entitas:\")\n",
|
1080 |
+
"for entity, metrics in results.get(\"eval_per_entity\", {}).items():\n",
|
1081 |
+
" print(f\"{entity}:\")\n",
|
1082 |
+
" print(f\" Precision: {metrics['precision']:.4f}\")\n",
|
1083 |
+
" print(f\" Recall: {metrics['recall']:.4f}\")\n",
|
1084 |
+
" print(f\" F1-Score: {metrics['f1']:.4f}\")\n",
|
1085 |
+
"\n",
|
1086 |
+
"# Save the model\n",
|
1087 |
+
"try:\n",
|
1088 |
+
" model.save_pretrained(\"./ner_model\")\n",
|
1089 |
+
" tokenizer.save_pretrained(\"./ner_model\")\n",
|
1090 |
+
" print(\"\\nModel dan tokenizer telah disimpan ke './ner_model'\")\n",
|
1091 |
+
"except Exception as e:\n",
|
1092 |
+
" print(f\"Gagal menyimpan model: {e}\")\n",
|
1093 |
+
" sys.exit(1)\n",
|
1094 |
+
"\n",
|
1095 |
+
"# Example inference on test samples\n",
|
1096 |
+
"print(\"\\nContoh Prediksi pada Data Test (5 Sampel):\")\n",
|
1097 |
+
"try:\n",
|
1098 |
+
" for i in range(min(5, len(tokenized_dataset[\"test\"]))):\n",
|
1099 |
+
" sample = tokenized_dataset[\"test\"][i]\n",
|
1100 |
+
" input_ids = torch.tensor([sample[\"input_ids\"]], device=device)\n",
|
1101 |
+
" attention_mask = torch.tensor([sample[\"attention_mask\"]], device=device)\n",
|
1102 |
+
" model.eval()\n",
|
1103 |
+
" with torch.no_grad():\n",
|
1104 |
+
" outputs = model(input_ids, attention_mask=attention_mask)\n",
|
1105 |
+
" predictions = outputs.logits.argmax(dim=2)[0].cpu().numpy()\n",
|
1106 |
+
" tokens = tokenizer.convert_ids_to_tokens(sample[\"input_ids\"])\n",
|
1107 |
+
" labels = [id2label[pred] for pred, label in zip(predictions, sample[\"labels\"]) if label != -100]\n",
|
1108 |
+
" true_labels = [id2label[label] for label in sample[\"labels\"] if label != -100]\n",
|
1109 |
+
" print(f\"\\nSampel {i+1}:\")\n",
|
1110 |
+
" print(f\"Tokens: {' '.join(tokens)}\")\n",
|
1111 |
+
" print(f\"True Labels: {true_labels}\")\n",
|
1112 |
+
" print(f\"Predicted Labels: {labels}\")\n",
|
1113 |
+
"except Exception as e:\n",
|
1114 |
+
" print(f\"Gagal melakukan inferensi: {e}\")\n",
|
1115 |
+
" sys.exit(1)\n",
|
1116 |
+
"\n",
|
1117 |
+
"# Analyze error patterns (DATE predicted as LOC)\n",
|
1118 |
+
"print(\"\\nAnalisis Pola Error (Tanggal diprediksi sebagai Lokasi):\")\n",
|
1119 |
+
"found_error = False\n",
|
1120 |
+
"for i in range(min(100, len(tokenized_dataset[\"test\"]))):\n",
|
1121 |
+
" sample = tokenized_dataset[\"test\"][i]\n",
|
1122 |
+
" input_ids = torch.tensor([sample[\"input_ids\"]], device=device)\n",
|
1123 |
+
" attention_mask = torch.tensor([sample[\"attention_mask\"]], device=device)\n",
|
1124 |
+
" with torch.no_grad():\n",
|
1125 |
+
" outputs = model(input_ids, attention_mask=attention_mask)\n",
|
1126 |
+
" predictions = outputs.logits.argmax(dim=2)[0].cpu().numpy()\n",
|
1127 |
+
" true_labels = [id2label[label] for label in sample[\"labels\"] if label != -100]\n",
|
1128 |
+
" pred_labels = [id2label[pred] for pred, label in zip(predictions, sample[\"labels\"]) if label != -100]\n",
|
1129 |
+
" for j, (true, pred) in enumerate(zip(true_labels, pred_labels)):\n",
|
1130 |
+
" if true.startswith(\"B-DATE\") and pred.startswith(\"B-LOC\"):\n",
|
1131 |
+
" tokens = tokenizer.convert_ids_to_tokens(sample[\"input_ids\"])\n",
|
1132 |
+
" print(f\"\\nSampel dengan Error (DATE diprediksi sebagai LOC):\")\n",
|
1133 |
+
" print(f\"Tokens: {' '.join(tokens)}\")\n",
|
1134 |
+
" print(f\"True Labels: {true_labels}\")\n",
|
1135 |
+
" print(f\"Predicted Labels: {pred_labels}\")\n",
|
1136 |
+
" found_error = True\n",
|
1137 |
+
" break\n",
|
1138 |
+
" if found_error:\n",
|
1139 |
+
" break\n",
|
1140 |
+
"if not found_error:\n",
|
1141 |
+
" print(\"Tidak ditemukan contoh tanggal yang diprediksi sebagai lokasi dalam 100 sampel.\")\n",
|
1142 |
+
"\n",
|
1143 |
+
"# Data Security, Privacy, and Ethics\n",
|
1144 |
+
"print(\"\\nPertimbangan Keamanan Data, Privasi, dan Etika:\")\n",
|
1145 |
+
"print(\"- Dataset bersumber dari berita publik, tidak mengandung informasi sensitif seperti alamat atau nomor identitas.\")\n",
|
1146 |
+
"print(\"- Nama orang dalam dataset berasal dari media publik, aman untuk digunakan.\")\n",
|
1147 |
+
"print(\"- Dataset mencakup berbagai topik berita, mengurangi risiko bias terhadap entitas tertentu.\")"
|
1148 |
+
]
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"cell_type": "code",
|
1152 |
+
"execution_count": null,
|
1153 |
+
"id": "714cfb72",
|
1154 |
+
"metadata": {},
|
1155 |
+
"outputs": [],
|
1156 |
+
"source": []
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"cell_type": "code",
|
1160 |
+
"execution_count": null,
|
1161 |
+
"id": "93508875",
|
1162 |
+
"metadata": {},
|
1163 |
+
"outputs": [],
|
1164 |
+
"source": []
|
1165 |
+
}
|
1166 |
+
],
|
1167 |
+
"metadata": {
|
1168 |
+
"kernelspec": {
|
1169 |
+
"display_name": "base",
|
1170 |
+
"language": "python",
|
1171 |
+
"name": "python3"
|
1172 |
+
},
|
1173 |
+
"language_info": {
|
1174 |
+
"codemirror_mode": {
|
1175 |
+
"name": "ipython",
|
1176 |
+
"version": 3
|
1177 |
+
},
|
1178 |
+
"file_extension": ".py",
|
1179 |
+
"mimetype": "text/x-python",
|
1180 |
+
"name": "python",
|
1181 |
+
"nbconvert_exporter": "python",
|
1182 |
+
"pygments_lexer": "ipython3",
|
1183 |
+
"version": "3.12.7"
|
1184 |
+
}
|
1185 |
+
},
|
1186 |
+
"nbformat": 4,
|
1187 |
+
"nbformat_minor": 5
|
1188 |
+
}
|
ner_model/config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_num_labels": 5,
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "I-PERSON",
|
14 |
+
"1": "B-ORGANISATION",
|
15 |
+
"2": "I-ORGANISATION",
|
16 |
+
"3": "B-PLACE",
|
17 |
+
"4": "I-PLACE",
|
18 |
+
"5": "O",
|
19 |
+
"6": "B-PERSON"
|
20 |
+
},
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 3072,
|
23 |
+
"label2id": {
|
24 |
+
"B-ORGANISATION": 1,
|
25 |
+
"B-PERSON": 6,
|
26 |
+
"B-PLACE": 3,
|
27 |
+
"I-ORGANISATION": 2,
|
28 |
+
"I-PERSON": 0,
|
29 |
+
"I-PLACE": 4,
|
30 |
+
"O": 5
|
31 |
+
},
|
32 |
+
"layer_norm_eps": 1e-12,
|
33 |
+
"max_position_embeddings": 512,
|
34 |
+
"model_type": "bert",
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 12,
|
37 |
+
"output_past": true,
|
38 |
+
"pad_token_id": 0,
|
39 |
+
"pooler_fc_size": 768,
|
40 |
+
"pooler_num_attention_heads": 12,
|
41 |
+
"pooler_num_fc_layers": 3,
|
42 |
+
"pooler_size_per_head": 128,
|
43 |
+
"pooler_type": "first_token_transform",
|
44 |
+
"position_embedding_type": "absolute",
|
45 |
+
"torch_dtype": "float32",
|
46 |
+
"transformers_version": "4.53.1",
|
47 |
+
"type_vocab_size": 2,
|
48 |
+
"use_cache": true,
|
49 |
+
"vocab_size": 50000
|
50 |
+
}
|
ner_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b28df302c0498855d30b937557b567a7be050c81501056a493828385199064
|
3 |
+
size 495447892
|
ner_model/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
ner_model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ner_model/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
ner_model/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.44.2
|
2 |
+
datasets==2.21.0
|
3 |
+
torch==2.4.1
|
4 |
+
gradio==4.44.0
|
5 |
+
pandas==2.2.2
|
6 |
+
numpy==1.26.4
|