Spaces:
Sleeping
Sleeping
File size: 1,672 Bytes
4cbe4e9 ddedbff 4cbe4e9 95b17be 4cbe4e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
import logging
import asyncio
from contextlib import asynccontextmanager
from app import QueryRequest # Import the request model
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set page config
st.set_page_config(page_title="Certification Chat", layout="centered")
st.title("🎓 Certification Chat Assistant")
# Create a function to handle the async call
async def async_query(query_text):
from app import handle_query # Import here to avoid circular imports
request = QueryRequest(query=query_text)
return await handle_query(request)
# Function to run async code in Streamlit
def run_async(coroutine):
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coroutine)
# User input
user_input = st.text_area("💬 Enter your prompt:", height=150)
if user_input:
st.markdown("## 🧠 Response")
try:
# Use try-except to handle errors
with st.spinner("Processing your query..."):
# Run the async function
result = run_async(async_query(user_input))
# Display output
st.write("**Certification:**", result["certification"])
st.write("**Answer from '.' chunking method:**", result["certif_index"])
st.write("**Answer from hybrid chunking method:**", result["certification_index"])
except Exception as e:
st.error(f"An error occurred: {str(e)}")
logger.error(f"Error processing query: {e}", exc_info=True) |